[1]

Matsubayashi Y. 2014. Posttranslationally modified small-peptide signals in plants. Annual Review of Plant Biology 65:385−413

doi: 10.1146/annurev-arplant-050312-120122
[2]

Pearce G, Strydom D, Johnson S, Ryan CA. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895−97

doi: 10.1126/science.253.5022.895
[3]

Matsubayashi Y, Sakagami Y. 2006. Peptide hormones in plants. Annual Review of Plant Biology 57:649−74

doi: 10.1146/annurev.arplant.56.032604.144204
[4]

Zhang Z, Gigli-Bisceglia N, Li W, Li S, Wang J, et al. 2024. SCOOP10 and SCOOP12 peptides act through MIK2 receptor-like kinase to antagonistically regulate Arabidopsis leaf senescence. Molecular Plant 17:1805−19

doi: 10.1016/j.molp.2024.10.010
[5]

Murphy E, Smith S, De Smet I. 2012. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. The Plant Cell 24:3198−217

doi: 10.1105/tpc.112.099010
[6]

Fukuda H, Ohashi-Ito K. 2019. Vascular tissue development in plants. Current Topics in Developmental Biology 131:141−60

doi: 10.1016/bs.ctdb.2018.10.005
[7]

Huffaker A, Pearce G, Ryan C A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proceedings of the National Academy of Sciences of the United States of America 103:10098−103

doi: 10.1073/pnas.0603727103
[8]

Song W, Han Z, Wang J, Lin G, Chai J. 2017. Structural insights into ligand recognition and activation of plant receptor kinases. Current Opinion in Structural Biology 43:18−27

doi: 10.1016/j.sbi.2016.09.012
[9]

He Y, Zhou J, Shan L, Meng X. 2018. Plant cell surface receptor-mediated signaling - a common theme amid diversity. Journal of Cell Science 131:jcs209353

doi: 10.1242/jcs.209353
[10]

Anderson ED, Molloy SS, Jean F, Fei H, Shimamura S, et al. 2002. The ordered and compartment-specfific autoproteolytic removal of the furin intramolecular chaperone is required for enzyme activation. Journal of Biological Chemistry 277:12879−90

doi: 10.1074/jbc.M108740200
[11]

Srivastava R, Liu JX, Howell SH. 2008. Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in arabidopsis. The Plant Journal 56:219−27

doi: 10.1111/j.1365-313X.2008.03598.x
[12]

Reichardt S, Piepho HP, Stintzi A, Schaller A. 2020. Peptide signaling for drought-induced tomato flower drop. Science 367:1482−85

doi: 10.1126/science.aaz5641
[13]

Stührwohldt N, Bühler E, Sauter M, Schaller A. 2021. Phytosulfokine (PSK) precursor processing by subtilase sbt3. 8 and psk signaling improve drought stress tolerance in arabidopsis. Journal of Experimental Botany 72:3427−40

doi: 10.1093/jxb/erab017
[14]

Schardon K, Hohl M, Graff L, Pfannstiel J, Schulze W, et al. 2016. Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases. Science 354:1594−97

doi: 10.1126/science.aai8550
[15]

Stührwohldt N, Ehinger A, Thellmann K, Schaller A. 2020. Processing and formation of bioactive cle40 peptide are controlled by posttranslational proline hydroxylation. Plant Physiology 184:1573−84

doi: 10.1104/pp.20.00528
[16]

Royek S, Bayer M, Pfannstiel J, Pleiss J, Ingram G, et al. 2022. Processing of a plant peptide hormone precursor facilitated by posttranslational tyrosine sulfation. Proceedings of the National Academy of Sciences of the United States of America 119:e2201195119

doi: 10.1073/pnas.2201195119
[17]

Srivastava R, Liu JX, Guo H, Yin Y, Howell SH. 2009. Regulation and processing of a plant peptide hormone, atralf23, in arabidopsis. The Plant Journal 59:930−39

doi: 10.1111/j.1365-313X.2009.03926.x
[18]

Stührwohldt N, Scholl S, Lang L, Katzenberger J, Schumacher K, et al. 2020. The biogenesis of clel peptides involves several processing events in consecutive compartments of the secretory pathway. Elife 9:e55580

doi: 10.7554/eLife.55580
[19]

Doll NM, Royek S, Fujita S, Okuda S, Chamot S, et al. 2020. A two-way molecular dialogue between embryo and endosperm is required for seed development. Science 367:431−35

doi: 10.1126/science.aaz4131
[20]

Yang H, Kim X, Skłenar J, Aubourg S, Sancho-Andrés G, et al. 2023. Subtilase-mediated biogenesis of the expanded family of serine rich endogenous peptides. Nature Plants 9:2085−94

doi: 10.1038/s41477-023-01583-x
[21]

Ghorbani S, Hoogewijs K, Pečenková T, Fernandez A, Inzé A, et al. 2016. The SBT6.1 subtilase processes the GOLVEN1 peptide controlling cell elongation. Journal of Experimental Botany 67:4877−87

doi: 10.1093/jxb/erw241
[22]

Hander T, Fernández-Fernández ÁD, Kumpf RP, Willems P, Schatowitz H, et al. 2019. Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides. Science 363:eaar7486

doi: 10.1126/science.aar7486
[23]

Shen W, Liu J, Li JF. 2019. Type-ii metacaspases mediate the processing of plant elicitor peptides in arabidopsis. Molecular Plant 12:1524−33

doi: 10.1016/j.molp.2019.08.003
[24]

Schaller A, Stintzi A, Rivas S, Serrano I, Chichkova NV, et al. 2018. From structure to function - a family portrait of plant subtilases. New Phytologist 218:901−15

doi: 10.1111/nph.14582
[25]

Schaller A. 2004. A cut above the rest: the regulatory function of plant proteases. Planta 220:183−97

doi: 10.1007/s00425-004-1407-2
[26]

Tanaka H, Onouchi H, Kondo M, Hara-Nishimura I, Nishimura M, et al. 2001. A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128:4681−89

doi: 10.1242/dev.128.23.4681
[27]

Rautengarten C, Usadel B, Neumetzler L, Hartmann J, Büssis D, et al. 2008. A subtilisin-like serine protease essential for mucilage release from arabidopsis seed coats. The Plant Journal 54:466−80

doi: 10.1111/j.1365-313X.2008.03437.x
[28]

Wang R, Liu S, Wang J, Dong Q, Xu L, et al. 2013. Purification, characterization and identification of a senescence related serine protease in dark-induced senescent wheat leaves. Phytochemistry 95:118−26

doi: 10.1016/j.phytochem.2013.06.025
[29]

Martinez DE, Borniego ML, Battchikova N, Aro EM, Tyystjärvi E, et al. 2015. SASP, a senescence-associated subtilisin protease, is involved in reproductive development and determination of silique number in arabidopsis. Journal of Experimental Botany 66:161−74

doi: 10.1093/jxb/eru409
[30]

Rautengarten C, Steinhauser D, Büssis D, Stintzi A, Schaller A, et al. 2005. Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family. PLoS Computational Biology 1:e40

doi: 10.1371/journal.pcbi.0010040
[31]

Liu JX, Srivastava R, Che P, Howell SH. 2007. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. The Plant Journal 51:897−909

doi: 10.1111/j.1365-313X.2007.03195.x
[32]

Liu JX, Srivastava R, Che P, Howell SH. 2007. An endoplasmic reticulum stress response in arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. The Plant Cell 19:4111−19

doi: 10.1105/tpc.106.050021
[33]

Matsubayashi Y, Sakagami Y. 1999. Characterization of specific binding sites for a mitogenic sulfated peptide, phytosulfokine-α, in the plasma-membrane fraction derived from Oryza sativa L. European Journal of Biochemistry 262:666−71

doi: 10.1046/j.1432-1327.1999.00409.x
[34]

Stührwohldt N, Schaller A. 2019. Regulation of plant peptide hormones and growth factors by post-translational modification. Plant Biology 21:49−63

doi: 10.1111/plb.12881
[35]

Hanai H, Nakayama D, Yang H, Matsubayashi Y, Hirota Y, et al. 2000. Existence of a plant tyrosylprotein sulfotransferase: novel plant enzyme catalyzing tyrosine O-sulfation of preprophytosulfokine variants in vitro. FEBS Letters 470:97−101

doi: 10.1016/S0014-5793(00)01299-0
[36]

Kutschmar A, Rzewuski G, Stührwohldt N, Beemster GTS, Inzé D, et al. 2009. Psk-alpha promotes root growth in Arabidopsis. New Phytologist 181:820−31

doi: 10.1111/j.1469-8137.2008.02710.x
[37]

Meyer M, Leptihn S, Welz M, Schaller A. 2016. Functional characterization of propeptides in plant subtilases as intramolecular chaperones and inhibitors of the mature protease. Journal of Biological Chemistry 291:19449−61

doi: 10.1074/jbc.M116.744151
[38]

Cedzich A, Huttenlocher F, Kuhn BM, Pfannstiel J, Gabler L, et al. 2009. The protease-associated domain and C-terminal extension are required for zymogen processing, sorting within the secretory pathway, and activity of tomato subtilase 3 (SlSBT3). Journal of Biological Chemistry 284:14068−78

doi: 10.1074/jbc.M900370200
[39]

Hou Q, Wang L, Qi Y, Yan T, Zhang F, et al. 2023. A systematic analysis of the subtilase gene family and expression and subcellular localization investigation of anther-specific members in maize. Plant Physiology and Biochemistry 203:108041

doi: 10.1016/j.plaphy.2023.108041
[40]

Engineer CB, Ghassemian M, Anderson JC, Peck SC, Hu H, et al. 2014. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature 513:246−50

doi: 10.1038/nature13452
[41]

Brück S, Pfannstiel J, Ingram G, Stintzi A, Schaller A. 2023. Analysis of peptide hormone maturation and processing specificity using isotope-labeled peptides. Methods in Molecular Biology 2581:323−35

doi: 10.1007/978-1-0716-2784-6_23
[42]

Chichkova NV, Shaw J, Galiullina RA, Drury GE, Tuzhikov AI, et al. 2010. Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. EMBO Journal 29:1149−61

doi: 10.1038/emboj.2010.1
[43]

Chichkova NV, Galiullina RA, Mochalova LV, Trusova SV, Sobri ZM, et al. 2018. Arabidopsis thaliana phytaspase: identification and peculiar properties. Functional Plant Biology 45:171−79

doi: 10.1071/FP16321
[44]

Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y. 2009. A glycopeptide regulating stem cell fate in arabidopsis thaliana. Nature Chemical Biology 5:578−80

doi: 10.1038/nchembio.182
[45]

Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M. 2013. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nature Communications 4:2191

doi: 10.1038/ncomms3191
[46]

Butenko M A, Wildhagen M, Albert M, Jehle A, Kalbacher H, et al. 2014. Tools and strategies to match peptide-ligand receptor pairs. The Plant Cell 26:1838−47

doi: 10.1105/tpc.113.120071
[47]

Gao X, Guo Y. 2012. CLE peptides in plants: proteolytic processing, structure-activity relationship, and ligand-receptor interaction. Journal of Integrative Plant Biology 54:738−45

doi: 10.1111/j.1744-7909.2012.01154.x
[48]

Xing Q, Creff A, Waters A, Tanaka H, Goodrich J, et al. 2013. ZHOUPI controls embryonic cuticle formation via a signalling pathway involving the subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases GASSHO1 and GASSHO2. Development 140:770−79

doi: 10.1242/dev.088898
[49]

Von Groll U, Berger D, Altmann T. 2002. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. The Plant Cell 14:1527−39

doi: 10.1105/tpc.001016
[50]

Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, et al. 2010. Stomagen positively regulates stomatal density in arabidopsis. Nature 463:241−44

doi: 10.1038/nature08682
[51]

Guo T, Lu ZQ, Xiong Y, Shan JX, Ye WW, et al. 2023. Optimization of rice panicle architecture by specifically suppressing ligand-receptor pairs. Nature Communications 14:1640

doi: 10.1038/s41467-023-37326-x
[52]

Liu JX, Srivastava R, Howell S. 2009. Overexpression of an Arabidopsis gene encoding a subtilase (AtSBT5.4) produces a clavata-like phenotype. Planta 230:687−97

doi: 10.1007/s00425-009-0976-5
[53]

D'Erfurth I, Le Signor C, Aubert G, Sanchez M, Vernoud V, et al. 2012. A role for an endosperm-localized subtilase in the control of seed size in legumes. New Phytologist 196:738−51

doi: 10.1111/j.1469-8137.2012.04296.x
[54]

Uhrig RG, Moorhead G. 2017. AtSLP2 is an intronless protein phosphatase that co-expresses with intronless mitochondrial pentatricopeptide repeat (PPR) and tetratricopeptide (TPR) protein encoding genes. Plant Signaling & Behavior 12:e1307493

doi: 10.1080/15592324.2017.1307493
[55]

Golldack D, Vera P, Dietz KJ. 2003. Expression of subtilisin-like serine proteases in Arabidopsis thaliana is cell-specific and responds to jasmonic acid and heavy metals with developmental differences. Physiologia Plantarum 118:64−73

doi: 10.1034/j.1399-3054.2003.00087.x
[56]

Ramírez V, López A, Mauch-Mani B, Gil MJ, Vera P. 2013. An extracellular subtilase switch for immune priming in Arabidopsis. PLoS Pathogens 9:e1003445

doi: 10.1371/journal.ppat.1003445
[57]

Sénéchal F, Graff L, Surcouf O, Marcelo P, Rayon C, et al. 2014. Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3. 5, a subtilisin-like serine protease. Annals of Botany 114:1161−75

[58]

Lozano-Torres JL, Wilbers RH, Warmerdam S, Finkers-Tomczak A, Diaz-Granados A, et al. 2014. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors. PLoS Pathogens 10:e1004569

doi: 10.1371/journal.ppat.1004569
[59]

Serrano I, Buscaill P, Audran C, Pouzet C, Jauneau A, et al. 2016. A non canonical subtilase attenuates the transcriptional activation of defence responses in Arabidopsis thaliana. Elife 5:e19755

doi: 10.7554/eLife.19755
[60]

Singh A. 2022. GIGANTEA regulates lateral root formation by modulating auxin signaling in arabidopsis thaliana. Plant Signaling & Behavior 17:2096780

doi: 10.1080/15592324.2022.2096780
[61]

Book AJ, Yang P, Scalf M, Smith LM, Vierstra RD. 2005. Tripeptidyl peptidase II. An oligomeric protease complex from arabidopsis. Plant Physiology 138:1046−57

doi: 10.1104/pp.104.057406
[62]

Reichardt S, Repper D, Tuzhikov AI, Galiullina RA, Planas-Marquès M, et al. 2018. The tomato subtilase family includes several cell death-related proteinases with caspase specificity. Scientific Reports 8:10531

doi: 10.1038/s41598-018-28769-0
[63]

Othman R, Nuraziyan A. 2010. Fruit-specific expression of Papaya subtilase gene. Journal of Plant Physiology 167:131−37

doi: 10.1016/j.jplph.2009.07.015
[64]

Beilinson V, Moskalenko AOV, Reverdatto BSV, Jung AR, et al. 2002. Two subtilisin-like proteases from soybean. Physiologia Plantarum 115:585−97

doi: 10.1034/j.1399-3054.2002.1150413.x
[65]

Jin X, Liu Y, Hou Z, Zhang Y, Fang Y, et al. 2021. Genome-wide investigation of SBT family genes in pineapple and functional analysis of AcoSBT1.12 in floral transition. Frontiers in Genetics 12:730821

doi: 10.3389/fgene.2021.730821
[66]

Yang Y, Zhang F, Zhou T, Fang A, Yu Y, et al. 2021. In silico identification of the full complement of subtilase-encoding genes and characterization of the role of TaSBT1.7 in resistance against stripe rust in wheat. Phytopathology 111:398−407

doi: 10.1094/PHYTO-05-20-0176-R
[67]

Dai M, Zhou N, Zhang Y, Zhang Y, Ni K, et al. 2022. Genome-wide analysis of the SBT gene family involved in drought tolerance in cotton. Frontiers in Plant Science 13:1097732

doi: 10.3389/fpls.2022.1097732