| [1] |
Matsubayashi Y. 2014. Posttranslationally modified small-peptide signals in plants. |
| [2] |
Pearce G, Strydom D, Johnson S, Ryan CA. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. |
| [3] |
Matsubayashi Y, Sakagami Y. 2006. Peptide hormones in plants. |
| [4] |
Zhang Z, Gigli-Bisceglia N, Li W, Li S, Wang J, et al. 2024. SCOOP10 and SCOOP12 peptides act through MIK2 receptor-like kinase to antagonistically regulate Arabidopsis leaf senescence. |
| [5] |
Murphy E, Smith S, De Smet I. 2012. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. |
| [6] |
Fukuda H, Ohashi-Ito K. 2019. Vascular tissue development in plants. |
| [7] |
Huffaker A, Pearce G, Ryan C A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. |
| [8] |
Song W, Han Z, Wang J, Lin G, Chai J. 2017. Structural insights into ligand recognition and activation of plant receptor kinases. |
| [9] |
He Y, Zhou J, Shan L, Meng X. 2018. Plant cell surface receptor-mediated signaling - a common theme amid diversity. |
| [10] |
Anderson ED, Molloy SS, Jean F, Fei H, Shimamura S, et al. 2002. The ordered and compartment-specfific autoproteolytic removal of the furin intramolecular chaperone is required for enzyme activation. |
| [11] |
Srivastava R, Liu JX, Howell SH. 2008. Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in arabidopsis. |
| [12] |
Reichardt S, Piepho HP, Stintzi A, Schaller A. 2020. Peptide signaling for drought-induced tomato flower drop. |
| [13] |
Stührwohldt N, Bühler E, Sauter M, Schaller A. 2021. Phytosulfokine (PSK) precursor processing by subtilase sbt3. |
| [14] |
Schardon K, Hohl M, Graff L, Pfannstiel J, Schulze W, et al. 2016. Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases. |
| [15] |
Stührwohldt N, Ehinger A, Thellmann K, Schaller A. 2020. Processing and formation of bioactive cle40 peptide are controlled by posttranslational proline hydroxylation. |
| [16] |
Royek S, Bayer M, Pfannstiel J, Pleiss J, Ingram G, et al. 2022. Processing of a plant peptide hormone precursor facilitated by posttranslational tyrosine sulfation. |
| [17] |
Srivastava R, Liu JX, Guo H, Yin Y, Howell SH. 2009. Regulation and processing of a plant peptide hormone, atralf23, in arabidopsis. |
| [18] |
Stührwohldt N, Scholl S, Lang L, Katzenberger J, Schumacher K, et al. 2020. The biogenesis of clel peptides involves several processing events in consecutive compartments of the secretory pathway. |
| [19] |
Doll NM, Royek S, Fujita S, Okuda S, Chamot S, et al. 2020. A two-way molecular dialogue between embryo and endosperm is required for seed development. |
| [20] |
Yang H, Kim X, Skłenar J, Aubourg S, Sancho-Andrés G, et al. 2023. Subtilase-mediated biogenesis of the expanded family of serine rich endogenous peptides. |
| [21] |
Ghorbani S, Hoogewijs K, Pečenková T, Fernandez A, Inzé A, et al. 2016. The SBT6.1 subtilase processes the GOLVEN1 peptide controlling cell elongation. |
| [22] |
Hander T, Fernández-Fernández ÁD, Kumpf RP, Willems P, Schatowitz H, et al. 2019. Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides. |
| [23] |
Shen W, Liu J, Li JF. 2019. Type-ii metacaspases mediate the processing of plant elicitor peptides in arabidopsis. |
| [24] |
Schaller A, Stintzi A, Rivas S, Serrano I, Chichkova NV, et al. 2018. From structure to function - a family portrait of plant subtilases. |
| [25] |
Schaller A. 2004. A cut above the rest: the regulatory function of plant proteases. |
| [26] |
Tanaka H, Onouchi H, Kondo M, Hara-Nishimura I, Nishimura M, et al. 2001. A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. |
| [27] |
Rautengarten C, Usadel B, Neumetzler L, Hartmann J, Büssis D, et al. 2008. A subtilisin-like serine protease essential for mucilage release from arabidopsis seed coats. |
| [28] |
Wang R, Liu S, Wang J, Dong Q, Xu L, et al. 2013. Purification, characterization and identification of a senescence related serine protease in dark-induced senescent wheat leaves. |
| [29] |
Martinez DE, Borniego ML, Battchikova N, Aro EM, Tyystjärvi E, et al. 2015. SASP, a senescence-associated subtilisin protease, is involved in reproductive development and determination of silique number in arabidopsis. |
| [30] |
Rautengarten C, Steinhauser D, Büssis D, Stintzi A, Schaller A, et al. 2005. Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family. |
| [31] |
Liu JX, Srivastava R, Che P, Howell SH. 2007. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. |
| [32] |
Liu JX, Srivastava R, Che P, Howell SH. 2007. An endoplasmic reticulum stress response in arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. |
| [33] |
Matsubayashi Y, Sakagami Y. 1999. Characterization of specific binding sites for a mitogenic sulfated peptide, phytosulfokine-α, in the plasma-membrane fraction derived from Oryza sativa L. |
| [34] |
Stührwohldt N, Schaller A. 2019. Regulation of plant peptide hormones and growth factors by post-translational modification. |
| [35] |
Hanai H, Nakayama D, Yang H, Matsubayashi Y, Hirota Y, et al. 2000. Existence of a plant tyrosylprotein sulfotransferase: novel plant enzyme catalyzing tyrosine O-sulfation of preprophytosulfokine variants in vitro. |
| [36] |
Kutschmar A, Rzewuski G, Stührwohldt N, Beemster GTS, Inzé D, et al. 2009. Psk-alpha promotes root growth in Arabidopsis. |
| [37] |
Meyer M, Leptihn S, Welz M, Schaller A. 2016. Functional characterization of propeptides in plant subtilases as intramolecular chaperones and inhibitors of the mature protease. |
| [38] |
Cedzich A, Huttenlocher F, Kuhn BM, Pfannstiel J, Gabler L, et al. 2009. The protease-associated domain and C-terminal extension are required for zymogen processing, sorting within the secretory pathway, and activity of tomato subtilase 3 (SlSBT3). |
| [39] |
Hou Q, Wang L, Qi Y, Yan T, Zhang F, et al. 2023. A systematic analysis of the subtilase gene family and expression and subcellular localization investigation of anther-specific members in maize. |
| [40] |
Engineer CB, Ghassemian M, Anderson JC, Peck SC, Hu H, et al. 2014. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. |
| [41] |
Brück S, Pfannstiel J, Ingram G, Stintzi A, Schaller A. 2023. Analysis of peptide hormone maturation and processing specificity using isotope-labeled peptides. |
| [42] |
Chichkova NV, Shaw J, Galiullina RA, Drury GE, Tuzhikov AI, et al. 2010. Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. |
| [43] |
Chichkova NV, Galiullina RA, Mochalova LV, Trusova SV, Sobri ZM, et al. 2018. Arabidopsis thaliana phytaspase: identification and peculiar properties. |
| [44] |
Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y. 2009. A glycopeptide regulating stem cell fate in arabidopsis thaliana. |
| [45] |
Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M. 2013. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. |
| [46] |
Butenko M A, Wildhagen M, Albert M, Jehle A, Kalbacher H, et al. 2014. Tools and strategies to match peptide-ligand receptor pairs. |
| [47] |
Gao X, Guo Y. 2012. CLE peptides in plants: proteolytic processing, structure-activity relationship, and ligand-receptor interaction. |
| [48] |
Xing Q, Creff A, Waters A, Tanaka H, Goodrich J, et al. 2013. ZHOUPI controls embryonic cuticle formation via a signalling pathway involving the subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases GASSHO1 and GASSHO2. |
| [49] |
Von Groll U, Berger D, Altmann T. 2002. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. |
| [50] |
Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, et al. 2010. Stomagen positively regulates stomatal density in arabidopsis. |
| [51] |
Guo T, Lu ZQ, Xiong Y, Shan JX, Ye WW, et al. 2023. Optimization of rice panicle architecture by specifically suppressing ligand-receptor pairs. |
| [52] |
Liu JX, Srivastava R, Howell S. 2009. Overexpression of an Arabidopsis gene encoding a subtilase (AtSBT5.4) produces a clavata-like phenotype. |
| [53] |
D'Erfurth I, Le Signor C, Aubert G, Sanchez M, Vernoud V, et al. 2012. A role for an endosperm-localized subtilase in the control of seed size in legumes. |
| [54] |
Uhrig RG, Moorhead G. 2017. AtSLP2 is an intronless protein phosphatase that co-expresses with intronless mitochondrial pentatricopeptide repeat (PPR) and tetratricopeptide (TPR) protein encoding genes. |
| [55] |
Golldack D, Vera P, Dietz KJ. 2003. Expression of subtilisin-like serine proteases in Arabidopsis thaliana is cell-specific and responds to jasmonic acid and heavy metals with developmental differences. |
| [56] |
Ramírez V, López A, Mauch-Mani B, Gil MJ, Vera P. 2013. An extracellular subtilase switch for immune priming in Arabidopsis. |
| [57] |
Sénéchal F, Graff L, Surcouf O, Marcelo P, Rayon C, et al. 2014. Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3. 5, a subtilisin-like serine protease. Annals of Botany 114:1161−75 |
| [58] |
Lozano-Torres JL, Wilbers RH, Warmerdam S, Finkers-Tomczak A, Diaz-Granados A, et al. 2014. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors. |
| [59] |
Serrano I, Buscaill P, Audran C, Pouzet C, Jauneau A, et al. 2016. A non canonical subtilase attenuates the transcriptional activation of defence responses in Arabidopsis thaliana. |
| [60] |
Singh A. 2022. GIGANTEA regulates lateral root formation by modulating auxin signaling in arabidopsis thaliana. |
| [61] |
Book AJ, Yang P, Scalf M, Smith LM, Vierstra RD. 2005. Tripeptidyl peptidase II. An oligomeric protease complex from arabidopsis. |
| [62] |
Reichardt S, Repper D, Tuzhikov AI, Galiullina RA, Planas-Marquès M, et al. 2018. The tomato subtilase family includes several cell death-related proteinases with caspase specificity. |
| [63] |
Othman R, Nuraziyan A. 2010. Fruit-specific expression of Papaya subtilase gene. |
| [64] |
Beilinson V, Moskalenko AOV, Reverdatto BSV, Jung AR, et al. 2002. Two subtilisin-like proteases from soybean. |
| [65] |
Jin X, Liu Y, Hou Z, Zhang Y, Fang Y, et al. 2021. Genome-wide investigation of SBT family genes in pineapple and functional analysis of AcoSBT1.12 in floral transition. |
| [66] |
Yang Y, Zhang F, Zhou T, Fang A, Yu Y, et al. 2021. In silico identification of the full complement of subtilase-encoding genes and characterization of the role of TaSBT1.7 in resistance against stripe rust in wheat. |
| [67] |
Dai M, Zhou N, Zhang Y, Zhang Y, Ni K, et al. 2022. Genome-wide analysis of the SBT gene family involved in drought tolerance in cotton. |