[1]

Chowdhary VA, Tank JG. 2023. Biomolecules Regulating Defense Mechanism in Plants. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 93:17−25

doi: 10.1007/s40011-022-01387-7
[2]

Guerreiro J, Marhavý P. 2023. Unveiling the intricate mechanisms of plant defense. Frontiers in Plant Physiology 1:1285373

doi: 10.3389/fphgy.2023.1285373
[3]

Choubey K, Dey SK, Dey G, Boruah T. 2024. Understanding the Role of Phytohormones in Mitigation of Biotic and Abiotic Stress: Current Status and Future Prospects. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences

doi: 10.1007/s40011-024-01566-8
[4]

Hu Y, Zhi L, Li P, Hancock JT, Hu X. 2022. The role of salicylic acid signal in plant growth, development and abiotic stress. Phyton-International Journal of Experimental Botany 91:2591−605

doi: 10.32604/phyton.2022.023733
[5]

Song W, Shao H, Zheng A, Zhao L, Xu Y. 2023. Advances in roles of salicylic acid in plant tolerance responses to biotic and abiotic stresses. Plants 12:3475

doi: 10.3390/plants12193475
[6]

Khan MIR, Poor P, Janda T. 2022. Salicylic acid: a versatile signaling molecule in plants. Journal of Plant Growth Regulation 41:1887−90

doi: 10.1007/s00344-022-10692-4
[7]

Saleem M, Fariduddin Q, Castroverde CDM. 2021. Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiology and Biochemistry 168:381−97

doi: 10.1016/j.plaphy.2021.10.011
[8]

Yuan M, Ngou BPM, Ding P, Xin XF. 2021. PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology 62:102030

doi: 10.1016/j.pbi.2021.102030
[9]

Zhang Y, Li X. 2019. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology 50:29−36

doi: 10.1016/j.pbi.2019.02.004
[10]

Qi G, Chen J, Chang M, Chen H, Hall K, et al. 2018. Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Molecular Plant 11:1427−39

doi: 10.1016/j.molp.2018.10.002
[11]

Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, et al. 1993. Requirement of salicylic Acid for the induction of systemic acquired resistance. Science 261:754−56

doi: 10.1126/science.261.5122.754
[12]

Mishra S, Roychowdhury R, Ray S, Hada A, Kumar A, et al. 2024. Salicylic acid (SA)-mediated plant immunity against biotic stresses: An insight on molecular components and signaling mechanism. Plant Stress 11:100427

doi: 10.1016/j.stress.2024.100427
[13]

Rattan A, Sharma D, Bhardwaj S, Pujari M, Kapoor D, et al. 2021. Role of salicylic acid in mitigation of biotic stress. In Salicylic Acid - A Versatile Plant Growth Regulator, ed. Hayat S, Siddiqui H, Damalas CA. Cham: Springer International Publishing. pp. 287−302. doi: 10.1007/978-3-030-79229-9_15

[14]

Mishra AK, Baek KH. 2021. Salicylic acid biosynthesis and metabolism: a divergent pathway for plants and bacteria. Biomolecules 11:705

doi: 10.3390/biom11050705
[15]

Jia X, Wang L, Zhao H, Zhang Y, Chen Z, et al. 2023. The origin and evolution of salicylic acid signaling and biosynthesis in plants. Molecular Plant 16:245−59

doi: 10.1016/j.molp.2022.12.002
[16]

Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF. 2011. Salicylic Acid biosynthesis and metabolism. Arabidopsis Book 9:e0156

doi: 10.1199/tab.0156
[17]

Chen Z, Zheng Z, Huang J, Lai Z, Fan B. 2009. Biosynthesis of salicylic acid in plants. Plant Signaling & Behavior 4:493−96

doi: 10.4161/psb.4.6.8392
[18]

Serino L, Reimmann C, Baur H, Beyeler M, Visca P, et al. 1995. Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Molecular & General Genetics 249:217−28

doi: 10.1007/BF00290369
[19]

Rossi CAM, Marchetta EJR, Kim JH, Castroverde CDM. 2023. Molecular regulation of the salicylic acid hormone pathway in plants under changing environmental conditions. Trends in Biochemical Sciences 48:699−712

doi: 10.1016/j.tibs.2023.05.004
[20]

Ullah C, Chen YH, Ortega MA, Tsai CJ. 2023. The diversity of salicylic acid biosynthesis and defense signaling in plants: knowledge gaps and future opportunities. Current Opinion in Plant Biology 72:102349

doi: 10.1016/j.pbi.2023.102349
[21]

Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, et al. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365:498−502

doi: 10.1126/science.aaw1720
[22]

Yamasaki K, Motomura Y, Yagi Y, Nomura H, Kikuchi S, et al. 2013. Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana. Plant Signaling & Behavior 8:e23603

doi: 10.4161/psb.23603
[23]

Torrens-Spence MP, Bobokalonova A, Carballo V, Glinkerman CM, Pluskal T, et al. 2019. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in arabidopsis. Molecular Plant 12:1577−86

doi: 10.1016/j.molp.2019.11.005
[24]

Peng Y, Yang J, Li X, Zhang Y. 2021. Salicylic acid: biosynthesis and signaling. Annual Review of Plant Biology 72:761−91

doi: 10.1146/annurev-arplant-081320-092855
[25]

Yokoo S, Inoue S, Suzuki N, Amakawa N, Matsui H, et al. 2018. Comparative analysis of plant isochorismate synthases reveals structural mechanisms underlying their distinct biochemical properties. Bioscience Reports 38:BSR20171457

doi: 10.1042/BSR20171457
[26]

Wildermuth MC, Dewdney J, Wu G, Ausubel FM. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562−65

doi: 10.1038/35107108
[27]

Garcion C, Lohmann A, Lamodière E, Catinot J, Buchala A, et al. 2008. Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of arabidopsis. Plant Physiology 147:1279−87

doi: 10.1104/pp.108.119420
[28]

Qin Y, Torp AM, Glauser G, Pedersen C, Rasmussen SK, et al. 2019. Barley isochorismate synthase mutant is phylloquinone-deficient, but has normal basal salicylic acid level. Plant Signaling & Behavior 14:1671122

doi: 10.1080/15592324.2019.1671122
[29]

Vogt T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3:2−20

doi: 10.1093/mp/ssp106
[30]

Xu L, Zhao H, Ruan W, Deng M, Wang F, et al. 2017. ABNORMAL INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice. The Plant Cell 29:560−74

doi: 10.1105/tpc.16.00665
[31]

Bussell JD, Reichelt M, Wiszniewski AAG, Gershenzon J, Smith SM. 2014. Peroxisomal ATP-binding cassette transporter COMATOSE and the multifunctional protein abnormal INFLORESCENCE MERISTEM are required for the production of benzoylated metabolites in Arabidopsis seeds. Plant Physiology 164:48−54

doi: 10.1104/pp.113.229807
[32]

León J, Shulaev V, Yalpani N, Lawton MA, Raskin I. 1995. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 92:10413−17

doi: 10.1073/pnas.92.22.10413
[33]

Janda T, Szalai G, Pál M. 2020. Salicylic Acid Signalling in Plants. International Journal of Molecular Sciences 21:2655

doi: 10.3390/ijms21072655
[34]

Sawada H, Shim IS, Usui K. 2006. Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis—modulation by salt stress in rice seedlings. Plant Science 171:263−70

doi: 10.1016/j.plantsci.2006.03.020
[35]

Pan Q, Zhan J, Liu H, Zhang J, Chen J, et al. 2006. Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Science 171:226−33

doi: 10.1016/j.plantsci.2006.03.012
[36]

Shine MB, Yang JW, El-Habbak M, Nagyabhyru P, Fu DQ, et al. 2016. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytologist 212:627−36

doi: 10.1111/nph.14078
[37]

Ogawa D, Nakajima N, Seo S, Mitsuhara I, Kamada H, et al. 2006. The phenylalanine pathway is the main route of salicylic acid biosynthesis in Tobacco mosaic virus-infected tobacco leaves. Plant Biotechnology 23:395−98

doi: 10.5511/plantbiotechnology.23.395
[38]

Huang J, Gu M, Lai Z, Fan B, Shi K, et al. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology 153:1526−38

doi: 10.1104/pp.110.157370
[39]

Wu J, Zhu W, Zhao Q. 2023. Salicylic acid biosynthesis is not from phenylalanine in Arabidopsis. Journal of Integrative Plant Biology 65:881−87

doi: 10.1111/jipb.13410
[40]

Tan J, He P, Xie DY. 2023. Unrelated to phenylalanine: feeding studies provide new insight into salicylic acid biosynthesis. Journal of Integrative Plant Biology 65:879−80

doi: 10.1111/jipb.13479
[41]

Ding P, Ding Y. 2020. Stories of salicylic acid: a plant defense hormone. Trends in Plant Science 25:549−65

doi: 10.1016/j.tplants.2020.01.004
[42]

Noutoshi Y, Okazaki M, Kida T, Nishina Y, Morishita Y, et al. 2012. Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis. The Plant Cell 24:3795−804

doi: 10.1105/tpc.112.098343
[43]

Dean JV, Delaney SP. 2008. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiologia Plantarum 132:417−25

doi: 10.1111/j.1399-3054.2007.01041.x
[44]

Yang Y, Xu R, Ma CJ, Corina Vlot A, Klessig DF, et al. 2008. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiology 147:1034−45

doi: 10.1104/pp.108.118224
[45]

Chen F, D'Auria JC, Tholl D, Ross JR, Gershenzon J, et al. 2003. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. The Plant Journal 36:577−88

doi: 10.1046/j.1365-313X.2003.01902.x
[46]

Sun T, Zhang Y, Li Y, Zhang Q, Ding Y, et al. 2015. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nature Communications 6:10159

doi: 10.1038/ncomms10159
[47]

Meng L, Yang H, Yang J, Wang Y, Ye T, et al. 2024. Tulip transcription factor TgWRKY75 activates salicylic acid and abscisic acid biosynthesis to synergistically promote petal senescence. Journal of Experimental Botany 75:2435−50

doi: 10.1093/jxb/erae021
[48]

van Verk MC, Bol JF, Linthorst HJM. 2011. WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biology 11:89

doi: 10.1186/1471-2229-11-89
[49]

He J, Liu Y, Yuan D, Duan M, Liu Y, et al. 2020. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proceedings of the National Academy of Sciences of the United States of America 117:271−77

doi: 10.1073/pnas.1902771116
[50]

Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, et al. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports 1:639−47

doi: 10.1016/j.celrep.2012.05.008
[51]

Zavaliev R, Mohan R, Chen T, Dong X. 2020. Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell 182:1093−108.e18

doi: 10.1016/j.cell.2020.07.016
[52]

Ali J, Tonğa A, Islam T, Mir S, Mukarram M, et al. 2024. Defense strategies and associated phytohormonal regulation in Brassica plants in response to chewing and sap-sucking insects. Frontiers in Plant Science 15:1376917

doi: 10.3389/fpls.2024.1376917
[53]

Mou Z, Fan W, Dong X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935−44

doi: 10.1016/S0092-8674(03)00429-X
[54]

Zavaliev R, Dong X. 2024. NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Molecular Cell 84:131−41

doi: 10.1016/j.molcel.2023.11.018
[55]

Kumar S, Zavaliev R, Wu Q, Zhou Y, Cheng J, et al. 2022. Structural basis of NPR1 in activating plant immunity. Nature 605:561−66

doi: 10.1038/s41586-022-04699-w
[56]

Canet JV, Dobón A, Roig A, Tornero P. 2010. Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant Cell & Environment 33:1911−22

doi: 10.1111/j.1365-3040.2010.02194.x
[57]

Pokotylo I, Kravets V, Ruelland E. 2019. Salicylic Acid Binding Proteins (SABPs): the hidden forefront of salicylic acid signalling. International Journal of Molecular Sciences 20:4377

doi: 10.3390/ijms20184377
[58]

Castelló MJ, Medina-Puche L, Lamilla J, Tornero P. 2018. NPR1 paralogs of Arabidopsis and their role in salicylic acid perception. PLoS ONE 13:e0209835

doi: 10.1371/journal.pone.0209835
[59]

Wang W, Withers J, Li H, Zwack PJ, Rusnac DV, et al. 2020. Structural basis of salicylic acid perception by Arabidopsis NPR proteins. Nature 586:311−16

doi: 10.1038/s41586-020-2596-y
[60]

Ding Y, Sun T, Ao K, Peng Y, Zhang Y, et al. 2018. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173:1454−1467.e15

doi: 10.1016/j.cell.2018.03.044
[61]

Canet JV, Dobón A, Fajmonová J, Tornero P. 2012. The BLADE-ON-PETIOLE genes of Arabidopsis are essential for resistance induced by methyl jasmonate. BMC Plant Biology 12:199

doi: 10.1186/1471-2229-12-199
[62]

Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, et al. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228−32

doi: 10.1038/nature11162
[63]

Manohar M, Tian M, Moreau M, Park SW, Choi HW, et al. 2014. Identification of multiple salicylic acid-binding proteins using two high throughput screens. Frontiers in Plant Science 5:777

doi: 10.3389/fpls.2014.00777
[64]

Kumari A, Singh SK. 2022. Role of plant hormones in combating biotic stress in plants. In Plant Perspectives to Global Climate Changes, ed. Aftab T, Roychoudhury A. Amsterdam: Elsevier. pp. 373−91. doi: 10.1016/b978-0-323-85665-2.00010-8

[65]

Bürger M, Chory J. 2019. Stressed Out About Hormones: How Plants Orchestrate Immunity. Cell Host & Microbe 26:163−72

doi: 10.1016/j.chom.2019.07.006
[66]

Hou S, Tsuda K. 2022. Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays in Biochemistry 66:647−56

doi: 10.1042/EBC20210090
[67]

Li N, Han X, Feng D, Yuan D, Huang LJ. 2019. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? International Journal of Molecular Sciences 20:671

doi: 10.3390/ijms20030671
[68]

Wei YS, Javed T, Liu TT, Ali A, Gao SJ. 2025. Mechanisms of Abscisic acid (ABA)-mediated plant defense responses: an updated review. Plant Stress 15:100724

doi: 10.1016/j.stress.2024.100724
[69]

Torii KU. 2022. Plant signaling: Peptide–receptor pair re-opens stomata after pathogen infection. Current Biology 32:R783−R786

doi: 10.1016/j.cub.2022.06.013
[70]

García-Andrade J, González B, Gonzalez-Guzman M, Rodriguez PL, Vera P. 2020. The role of ABA in plant immunity is mediated through the PYR1 receptor. International Journal of Molecular Sciences 21:5852

doi: 10.3390/ijms21165852
[71]

Kunkel BN, Johnson JMB. 2021. Auxin plays multiple roles during plant–pathogen interactions. Cold Spring Harbor Perspectives in Biology 13:a040022

doi: 10.1101/cshperspect.a040022
[72]

Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology 17:1784−90

doi: 10.1016/j.cub.2007.09.025
[73]

Chakraborty N, Ganguly R, Sarkar A, Dasgupta D, Sarkar J, et al. 2025. Multifunctional Role of Brassinosteroids in Plant Growth, Development, and Defense. Journal of Plant Growth Regulation

doi: 10.1007/s00344-024-11593-4
[74]

An YQ, Bi BS, Xu H, Ma DJ, Xi Z. 2024. Co-application of brassinolide and pyraclostrobin improved disease control efficacy by eliciting plant innate defense responses in Arabidopsis thaliana. Journal of Agricultural and Food Chemistry 72:916−32

doi: 10.1021/acs.jafc.3c07006
[75]

Park CH, Park YJ, Youn JH, Roh J, Kim SK. 2023. Brassinosteroids and salicylic acid mutually enhance endogenous content and signaling to show a synergistic effect on pathogen resistance in Arabidopsis thaliana. Journal of Plant Biology 66:181−92

doi: 10.1007/s12374-023-09390-9
[76]

Wang X, Gong Q, Cheng S, Qin N, Cao T, et al. 2024. Cytokinin Plays a Multifaceted Role in Ralstonia solanacearum-Triggered Plant Disease Development. Molecular Plant Pathology 25:e70045

doi: 10.1111/mpp.70045
[77]

Gupta R, Pizarro L, Leibman-Markus M, Marash I, Bar M. 2020. Cytokinin response induces immunity and fungal pathogen resistance, and modulates trafficking of the PRR LeEIX2 in tomato. Molecular Plant Pathology 21:1287−306

doi: 10.1111/mpp.12978
[78]

Singh D, Dhiman VK, Pandey H, Dhiman VK, Pandey D. 2022. Crosstalk between salicylic acid and auxins, cytokinins and gibberellins under biotic stress. In Auxins, Cytokinins and Gibberellins Signaling in Plants, ed. Aftab T. Cham: Springer International Publishing. pp. 249−62. doi: 10.1007/978-3-031-05427-3_11

[79]

Navarro L, Bari R, Achard P, Lisón P, Nemri A, et al. 2008. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Current Biology 18:650−55

doi: 10.1016/j.cub.2008.03.060
[80]

Verma R, Sharma B, Rather GA. 2024. Strigolactones: biosynthesis, regulation, signaling, roles, and response to stress. In Strigolactones, ed. Bashri G, Hayat S, Bajguz A. Amsterdam: Elsevier. pp. 147−88. doi: 10.1016/b978-0-443-13521-7.00009-9

[81]

Huang R, Bie S, Li S, Yuan B, Zhang L, et al. 2024. Strigolactones negatively regulate tobacco mosaic virus resistance in Nicotiana benthamiana. International Journal of Molecular Sciences 25:8518

doi: 10.3390/ijms25158518
[82]

Zhao X, Liu Q, Tan L. 2024. Callose and salicylic acid are key determinants of strigolactone-mediated disease resistance in Arabidopsis. Plants 13:2766

doi: 10.3390/plants13192766
[83]

Kusajima M, Fujita M, Soudthedlath K, Nakamura H, Yoneyama K, et al. 2022. Strigolactones modulate salicylic acid-mediated disease resistance in Arabidopsis thaliana. International Journal of Molecular Sciences 23:5246

doi: 10.3390/ijms23095246
[84]

Dou D, Zhou JM. 2012. Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host & Microbe 12:484−95

doi: 10.1016/j.chom.2012.09.003
[85]

Bauters L, Stojilković B, Gheysen G. 2021. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. Molecular Plant Pathology 22:1436−48

doi: 10.1111/mpp.13123
[86]

Kaya C, Ugurlar F, Ashraf M, Ahmad P. 2023. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiology and Biochemistry 196:431−43

doi: 10.1016/j.plaphy.2023.02.006
[87]

Vidhyasekaran P. 2015. Salicylic acid signaling in plant innate immunity. In Plant Hormone Signaling Systems in Plant Innate Immunity, ed. Vidhyasekaran P. Dordrecht, Netherlands: Springer. pp. 27−122. doi: 10.1007/978-94-017-9285-1_2

[88]

Bawa G, Feng L, Yan L, Du Y, Shang J, et al. 2019. Pre-treatment of salicylic acid enhances resistance of soybean seedlings to Fusarium solani. Plant Molecular Biology 101:315−23

doi: 10.1007/s11103-019-00906-x
[89]

Nawrath C, Métraux JP. 1999. Salicylic acid induction–deficient mutants of arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. The Plant Cell 11:1393−404

doi: 10.1105/tpc.11.8.1393
[90]

Mohamed HI, El-Shazly HH, Badr A. 2020. Role of salicylic acid in biotic and abiotic stress tolerance in plants. In Plant Phenolics in Sustainable Agriculture, ed. Lone R, Shuab R, Kamili AN. Volume 1. pp. 533−54. Singapore: Springer. doi: 10.1007/978-981-15-4890-1_23

[91]

Zribi I, Ghorbel M, Brini F. 2021. Pathogenesis Related Proteins (PRs): from cellular mechanisms to plant defense. Current Protein & Peptide Science 22:396−412

doi: 10.2174/1389203721999201231212736
[92]

van Loon LC, van Kammen A. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var "Samsun" and "Samsun NN". II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40:190−211

doi: 10.1016/0042-6822(70)90395-8
[93]

Jain D, Khurana JP. 2018. Role of Pathogenesis-Related (PR) proteins in plant defense mechanism. In Molecular Aspects of Plant-Pathogen Interaction, ed. Singh A, Singh IK. Singapore: Springer. pp. 265−81. doi: 10.1007/978-981-10-7371-7_12

[94]

Ali S, Ahmad Ganai B, Kamili AN, Ali Bhat A, Ahmad Mir Z, et al. 2018. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research 212−213:29−37

doi: 10.1016/j.micres.2018.04.008
[95]

Gamir J, Darwiche R, van't Hof P, Choudhary V, Stumpe M, et al. 2017. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. The Plant Journal 89:502−09

doi: 10.1111/tpj.13398
[96]

Islam MM, El-Sappah AH, Ali HM, Zandi P, Huang Q, et al. 2023. Pathogenesis-related proteins (PRs) countering environmental stress in plants: A review. South African Journal of Botany 160:414−27

doi: 10.1016/j.sajb.2023.07.003
[97]

van Butselaar T, Van den Ackerveken G. 2020. Salicylic acid steers the growth–immunity tradeoff. Trends in Plant Science 25:566−76

doi: 10.1016/j.tplants.2020.02.002
[98]

Malik G, Chaturvedi R, Hooda S. 2021. Role of Herbivore-Associated Molecular Patterns (HAMPs) in modulating plant defenses. In Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology: Chemical Ecology, ed. Singh IK, Singh A. Singapore: Springer. pp. 1−29. doi: 10.1007/978-981-15-2467-7_1

[99]

Zebelo SA, Maffei ME. 2015. Role of early signalling events in plant–insect interactions. Journal of Experimental Botany 66:435−48

doi: 10.1093/jxb/eru480
[100]

Erb M, Meldau S, Howe GA. 2012. Role of phytohormones in insect-specific plant reactions. Trends in Plant Science 17:250−59

doi: 10.1016/j.tplants.2012.01.003
[101]

Setotaw YB, Li J, Qi J, Ma C, Zhang M, et al. 2024. Salicylic acid positively regulates maize defenses against lepidopteran insects. Plant Diversity 46:519−29

doi: 10.1016/j.pld.2024.03.004
[102]

Zarate SI, Kempema LA, Walling LL. 2007. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiology 143:866−75

doi: 10.1104/pp.106.090035
[103]

Hettenhausen C, Heinrich M, Baldwin IT, Wu J. 2014. Fatty acid-amino acid conjugates are essential for systemic activation of salicylic acid-induced protein kinase and accumulation of jasmonic acid in Nicotiana attenuata. BMC Plant Biology 14:326

doi: 10.1186/s12870-014-0326-z
[104]

Zhang S, Liu Y. 2001. Activation of Salicylic Acid–Induced Protein Kinase, a Mitogen-Activated Protein Kinase, Induces Multiple Defense Responses in Tobacco. The Plant Cell 13:1877−89

[105]

Zhang Y, Fu Y, Liu X, Francis F, Fan J, et al. 2023. SmCSP4 from aphid saliva stimulates salicylic acid-mediated defence responses in wheat by interacting with transcription factor TaWKRY76. Plant Biotechnology Journal 21:2389−407

doi: 10.1111/pbi.14139
[106]

Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, et al. 2022. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences 23:2690

doi: 10.3390/ijms23052690
[107]

Munawar A, Xu Y, Abou El-Ela AS, Zhang Y, Zhong J, et al. 2023. Tissue-specific regulation of volatile emissions moves predators from flowers to attacked leaves. Current Biology 33:2321−2329.e5

doi: 10.1016/j.cub.2023.04.074
[108]

Gong Z, Luo Y, Zhang W, Jian W, Zhang L, et al. 2021. A SlMYB75-centred transcriptional cascade regulates trichome formation and sesquiterpene accumulation in tomato. Journal of Experimental Botany 72:3806−20

doi: 10.1093/jxb/erab086
[109]

Weinblum N, Cna'ani A, Yaakov B, Sadeh A, Avraham L, et al. 2021. Tomato cultivars resistant or susceptible to spider mites differ in their biosynthesis and metabolic profile of the monoterpenoid pathway. Frontiers in Plant Science 12:630155

doi: 10.3389/fpls.2021.630155
[110]

Züst T, Agrawal AA. 2016. Mechanisms and evolution of plant resistance to aphids. Nature Plants 2:15206

doi: 10.1038/nplants.2015.206
[111]

Anjali, Kumar S, Korra T, Thakur R, Arutselvan R, et al. 2023. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 8:100154

doi: 10.1016/j.stress.2023.100154
[112]

Ali B. 2021. Salicylic acid: an efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology 31:101884

doi: 10.1016/j.bcab.2020.101884
[113]

Vlot AC, Dempsey DA, Klessig DF. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology 47:177−206

doi: 10.1146/annurev.phyto.050908.135202
[114]

Gong Q, Wang Y, He L, Huang F, Zhang D, et al. 2023. Molecular basis of methyl-salicylate-mediated plant airborne defence. Nature 622:139−48

doi: 10.1038/s41586-023-06533-3
[115]

He Z, Webster S, He SY. 2022. Growth–defense trade-offs in plants. Current Biology 32:R634−R639

doi: 10.1016/j.cub.2022.04.070
[116]

Pokotylo I, Hodges M, Kravets V, Ruelland E. 2022. A ménage à trois: salicylic acid, growth inhibition, and immunity. Trends in Plant Science 27:460−71

doi: 10.1016/j.tplants.2021.11.008
[117]

Zhong Q, Hu H, Fan B, Zhu C, Chen Z. 2021. Biosynthesis and roles of salicylic acid in balancing stress response and growth in plants. International Journal of Molecular Sciences 22:11672

doi: 10.3390/ijms222111672
[118]

Li Y, Yang Y, Hu Y, Liu H, He M, et al. 2019. DELLA and EDS1 form a feedback regulatory module to fine-tune plant growth–defense tradeoff in Arabidopsis. Molecular Plant 12:1485−98

doi: 10.1016/j.molp.2019.07.006
[119]

Huang P, Dong Z, Guo P, Zhang X, Qiu Y, et al. 2020. Salicylic acid suppresses apical hook formation via NPR1-mediated repression of EIN3 and EIL1 in Arabidopsis. The Plant Cell 32:612−29

doi: 10.1105/tpc.19.00658
[120]

Kumar K, Mandal SN, Neelam K, de los Reyes BG. 2022. MicroRNA-mediated host defense mechanisms against pathogens and herbivores in rice: balancing gains from genetic resistance with trade-offs to productivity potential. BMC Plant Biology 22:351

doi: 10.1186/s12870-022-03723-5
[121]

Liu N, Xu Y, Li Q, Cao Y, Yang D, et al. 2022. A lncRNA fine-tunes salicylic acid biosynthesis to balance plant immunity and growth. Cell Host & Microbe 30:1124−1138.e8

doi: 10.1016/j.chom.2022.07.001