| [1] |
Zhou E, Yao M, Zhou Y, Xue D, Wang Y, et al. 2023. Effects of different sowing dates on yield and agronomic characters of vegetable spring soybean. Journal of Agriculture 13:25−30 doi: 10.11923/j.issn.2095-4050.cjas2022-0127 |
| [2] |
Liu S, Zhang M, Feng F, Tian Z. 2020. Toward a "green revolution" for soybean. Molecular Plant 13:688−97 doi: 10.1016/j.molp.2020.03.002 |
| [3] |
Zhang T. 2022. Crop breeding general. China: China Agriculture Press. pp. 99−121 |
| [4] |
Ma L, Kong F, Sun K, Wang T, Guo T. 2021. From classical radiation to modern radiation: past, present, and future of radiation mutation breeding. Frontiers in Public Health 9:768071 doi: 10.3389/fpubh.2021.768071 |
| [5] |
Ahloowalia BS, Maluszynski M. 2001. Induced mutations – a new paradigm in plant breeding. Euphytica 118:167−73 doi: 10.1023/A:1004162323428 |
| [6] |
Yang X, Han Y, Pu X, Xu W, Bai X, et al. 2024. Research progress of mutation breeding in rice. North Rice 54:41−50 doi: 10.3969/j.issn.1673-6737.2024.03.012 |
| [7] |
Shahwar D, Ahn N, Kim D, Ahn W, Park Y. 2023. Mutagenesis-based plant breeding approaches and genome engineering: a review focused on tomato. Mutation Research - Reviews in Mutation Research 792:108473 doi: 10.1016/j.mrrev.2023.108473 |
| [8] |
An X, Li Y. 2019. Review on the application of radiation mutagenesis in plant breeding. Seed Science and technology 37:47−48 |
| [9] |
Xu L, Wang L, Jiao Y, Zhan G, Liu T, et al. 2020. Research progress of irradiation treatment in agro-product processing. Journal of Anhui Agricultural Sciences 48(7):14−19 doi: 10.3969/j.issn.0517-6611.2020.07.005 |
| [10] |
Muller HJ. 1925. The regionally differential effect of X rays on crossing over in autosomes of Drosophila. Genetics 10:470−507 doi: 10.1093/genetics/10.5.470 |
| [11] |
Muller HJ, Altenburg E. 1930. The frequency of translocations produced by X-rays in Drosophila. Genetics 15:283−311 doi: 10.1093/genetics/15.4.283 |
| [12] |
Stadler LJ. 1928. Mutations in barley induced by X-rays and radium. Science 68:186−87 doi: 10.1126/science.68.1756.186 |
| [13] |
Reichert NA. 2021. History of plant genetic mutations ± human influences. In Vitro Cellular & Developmental Biology - Plant 57:554−64 doi: 10.1007/s11627-021-10182-4 |
| [14] |
Jankowicz-Cieslak J, Hofinger BJ, Jarc L, Junttila S, Galik B, et al. 2022. Spectrum and density of gamma and X-ray induced mutations in a non-model rice cultivar. Plants 11:3232 doi: 10.3390/plants11233232 |
| [15] |
Wang M, Weng X. 1987. Research progress and trend of soybean mutation breeding. Nuclear Agronomy Bulletin 1:4 |
| [16] |
Wang X, Liu C, Tu B, Zhang Q. 2018. Irradiation-induced mutation and its application in soybean breeding. Soil and Crops 7:293−302 doi: 10.11689/j.issn.2095-2961.2018.03.004 |
| [17] |
Wu F, Geng Y, Zhang Y, Ji C, Chen Y, et al. 2020. Assessing sustainability of soybean supply in China: evidence from provincial production and trade data. Journal of Cleaner Production 244:119006 doi: 10.1016/j.jclepro.2019.119006 |
| [18] |
Zou M, Xia Z. 2022. Hyper-seq: a novel, effective, and flexible marker-assisted selection and genotyping approach. The Innovation 3:100254 doi: 10.1016/j.xinn.2022.100254 |
| [19] |
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890 doi: 10.1093/bioinformatics/bty560 |
| [20] |
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754−60 doi: 10.1093/bioinformatics/btp324 |
| [21] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078−79 doi: 10.1093/bioinformatics/btp352 |
| [22] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−303 doi: 10.1101/gr.107524.110 |
| [23] |
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. 2011. The variant call format and VCFtools. Bioinformatics 27:2156−58 doi: 10.1093/bioinformatics/btr330 |
| [24] |
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80−92 doi: 10.4161/fly.19695 |
| [25] |
Kaul MLH, Bhan AK. 1977. Mutagenic effectiveness and efficiency of EMS, DES and gamma-rays in rice. Theoretical and Applied Genetics 50:241−46 doi: 10.1007/BF00273758 |
| [26] |
Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, et al. 2016. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment 30:1−16 doi: 10.1080/13102818.2015.1087333 |
| [27] |
Yu B, Zhang G, Jie R, Hou J, Guo Z. 2023. Effects of space mutation on related traits of seven potato varieties. Heilongjiang Agricultural Sciences 2023:20−27 |
| [28] |
Mullins E, Milbourne D, Petti C, Doyle-Prestwich BM, Meade C. 2006. Potato in the age of biotechnology. Trends in Plant Science 11:254−60 doi: 10.1016/j.tplants.2006.03.002 |
| [29] |
Elias R, Till BJ, Mba C, Al-Safadi B. 2009. Optimizing TILLING and Ecotilling techniques for potato (Solanum tuberosum L.). BMC Research Notes 2:141 doi: 10.1186/1756-0500-2-141 |
| [30] |
Hase Y, Nozawa S, Narumi I, Oono Y. 2017. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 391:14−19 doi: 10.1016/j.nimb.2016.11.023 |
| [31] |
Wu L, Yu Z. 2001. Radiobiological effects of a low-energy ion beam on wheat. Radiation and Environmental Biophysics 40:53−57 doi: 10.1007/s004110000078 |
| [32] |
Lan S. 2017. Study on parthenocarpy mechanism of watermelon irradiated by soft X-ray. Thesis. University of Zhejiang, China. pp. 5−70 |
| [33] |
Sasaki N, Watanabe A, Asakawa T, Sasaki M, Hoshi N, et al. 2018. Biological effects of ion beam irradiation on perennial gentian and apple. Plant Biotechnology 35:249−57 doi: 10.5511/plantbiotechnology.18.0612a |
| [34] |
Havlickova L, He Z, Berger M, Wang L, Sandmann G, et al. 2024. Genomics of predictive radiation mutagenesis in oilseed rape: modifying seed oil composition. Plant Biotechnology Journal 22:738−50 doi: 10.1111/pbi.14220 |
| [35] |
Okamura M, Yasuno N, Ohtsuka M, Tanaka A, Shikazono N, et al. 2003. Wide variety of flower-color and-shape mutants regenerated from leaf cultures irradiated with ion beams. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 206:574−78 doi: 10.1016/S0168-583X(03)00835-8 |
| [36] |
Shirasawa K, Hirakawa H, Nunome T, Tabata S, Isobe S. 2016. Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato. Plant Biotechnology Journal 14:51−60 doi: 10.1111/pbi.12348 |
| [37] |
Xiao X, Lin W, Li K, Feng X, Jin H, et al. 2019. Genome-wide analysis of artificial mutations induced by ethyl methanesulfonate in the eggplant (Solanum melongena L.). Genes 10:595 doi: 10.3390/genes10080595 |
| [38] |
Yuan N, Liang S, Zhou L, Yuan X, Li C, et al. 2024. Comparison of mutations induced by different doses of fast-neutron irradiation in the M1 generation of Sorghum (Sorghum bicolor). Genes 15:976 doi: 10.3390/genes15080976 |
| [39] |
Li Y, Wang D, Zhan X, Xu C, Xu L, et al. 2019. Responds of electron beam to target X-ray irradiation on bio-effect of gladiolus gandavensis and evaluation of radiosensitivity. Journal of Nuclear Agricultural Sciences 33:1049−58 doi: 10.11869/j.issn.100-8551.2019.06.1049 |
| [40] |
Liu Q, Ni S, Kong G, Wu C, He X. 2019. Mutagenic effect of 60Co-γ-ray on germination seeds of macadamia nut. Southwest China Journal of Agricultural Sciences 5:32 |
| [41] |
Hase Y, Satoh K, Kitamura S, Oono Y. 2018. Physiological status of plant tissue affects the frequency and types of mutations induced by carbon-ion irradiation in Arabidopsis. Scientific Reports 8:1394 doi: 10.1038/s41598-018-19278-1 |
| [42] |
Yamaguchi H, Hase Y, Tanaka A, Shikazono N, Degi K, et al. 2009. Mutagenic effects of ion beam irradiation on rice. Breeding Science 59:169−77 doi: 10.1270/jsbbs.59.169 |
| [43] |
Kazama Y, Ishii K, Hirano T, Wakana T, Yamada M, et al. 2017. Different mutational function of low- and high-linear energy transfer heavy-ion irradiation demonstrated by whole-genome resequencing of Arabidopsis mutants. The Plant Journal 92:1020−30 doi: 10.1111/tpj.13738 |
| [44] |
Belfield EJ, Gan X, Mithani A, Brown C, Jiang C, et al. 2012. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana. Genome Research 22:1306−15 doi: 10.1101/gr.131474.111 |
| [45] |
Li G, Chern M, Jain R, Martin JA, Schackwitz WS, et al. 2016. Genome-wide sequencing of 41 rice (Oryza sativa L.) mutated lines reveals diverse mutations induced by fast-neutron irradiation. Molecular Plant 9:1078−81 doi: 10.1016/j.molp.2016.03.009 |
| [46] |
Du Y, Luo S, Li X, Yang J, Cui T, et al. 2017. Identification of substitutions and small insertion-deletions induced by carbon-ion beam irradiation in Arabidopsis thaliana. Frontiers in Plant Science 8:1851 doi: 10.3389/fpls.2017.01851 |
| [47] |
Zhang C, Jiang S, Tian Y, DongX, Xiao J, et al. 2023. Smart breeding driven by advances in sequencing technology. Modern Agriculture 1:43−56 doi: 10.1002/moda.8 |