[1]

Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393−98

doi: 10.1038/nature11622
[2]

Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J, et al. 2007. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences of the United States of America 104:15276−81

doi: 10.1073/pnas.0703411104
[3]

Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, et al. 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307:1618−21

doi: 10.1126/science.1106927
[4]

Wang K, Wu P, Chen D, Zhou J, Yang X, et al. 2021. Detecting the selection signatures in Chinese duroc, Landrace, Yorkshire, Liangshan, and Qingyu pigs. Functional & Integrative Genomics 21(5-6):655−64

doi: 10.1007/s10142-021-00809-5
[5]

Moon S, Kim TH, Lee KT, Kwak W, Lee T, et al. 2015. A genome-wide scan for signatures of directional selection in domesticated pigs. BMC Genomics 16:130

doi: 10.1186/s12864-015-1330-x
[6]

Wang C, Wang H, Zhang Y, Tang Z, Li K, et al. 2015. Genome-wide analysis reveals artificial selection on coat colour and reproductive traits in Chinese domestic pigs. Molecular Ecology Resources 15(2):414−24

doi: 10.1111/1755-0998.12311
[7]

Zhuang Z, Ding R, Peng L, Wu J, Ye Y, et al. 2020. Genome-wide association analyses identify known and novel loci for teat number in Duroc pigs using single-locus and multi-locus models. BMC Genomics 21:344

doi: 10.1186/s12864-020-6742-6
[8]

Martins TF, Braga Magalhães AF, Verardo LL, Santos GC, Silva Fernandes AA, et al. 2022. Functional analysis of litter size and number of teats in pigs: from GWAS to post-GWAS. Theriogenology 193:157−66

doi: 10.1016/j.theriogenology.2022.09.005
[9]

Yin L, Zhang H, Tang Z, Yin D, Fu Y, et al. 2023. HIBLUP: an integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data. Nucleic Acids Research 51:3501−12

doi: 10.1093/nar/gkad074
[10]

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, et al. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4:7

doi: 10.1186/s13742-015-0047-8
[11]

Teng J, Gao Y, Yin H, Bai Z, Liu S, et al. 2024. A compendium of genetic regulatory effects across pig tissues. Nature Genetics 56:112−23

doi: 10.1038/s41588-023-01585-7
[12]

Liu K, Hou L, Yin Y, Wang B, Liu C, et al. 2023. Genome-wide association study reveals new QTL and functional candidate genes for the number of ribs and carcass length in pigs. Animal Genetics 54(4):435−45

doi: 10.1111/age.13315
[13]

Browning SR, Browning BL. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. The American Journal of Human Genetics 81:1084−97

doi: 10.1086/521987
[14]

Browning BL, Zhou Y, Browning SR. 2018. A one-penny imputed genome from next-generation reference panels. American Journal of Human Genetics 103(3):338−48

doi: 10.1016/j.ajhg.2018.07.015
[15]

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. 2011. The variant call format and VCFtools. Bioinformatics 27(15):2156−58

doi: 10.1093/bioinformatics/btr330
[16]

Zhang C, Dong SS, Xu JY, He WM, Yang TL. 2019. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35(10):1786−88

doi: 10.1093/bioinformatics/bty875
[17]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12):2725−29

doi: 10.1093/molbev/mst197
[18]

Ma Y, Ding X, Qanbari S, Weigend S, Zhang Q, et al. 2015. Properties of different selection signature statistics and a new strategy for combining them. Heredity 115(5):426−36

doi: 10.1038/hdy.2015.42
[19]

Eriksson A, Fernström P, Mehlig B, Sagitov S. 2008. An accurate model for genetic hitchhiking. Genetics 178:439−51

doi: 10.1534/genetics.107.076018
[20]

Rajawat D, Panigrahi M, Kumar H, Nayak SS, Parida S, et al. 2022. Identification of important genomic footprints using eight different selection signature statistics in domestic cattle breeds. Gene 816:146165

doi: 10.1016/j.gene.2021.146165
[21]

Voight BF, Kudaravalli S, Wen X, Pritchard JK. 2006. A map of recent positive selection in the human genome. PLoS Biology 4:e72

doi: 10.1371/journal.pbio.0040072
[22]

Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. 2014. On detecting incomplete soft or hard selective sweeps using haplotype structure. Molecular Biology and Evolution 31(5):1275−91

doi: 10.1093/molbev/msu077
[23]

Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, et al. 2007. Genome-wide detection and characterization of positive selection in human populations. Nature 449:913−18

doi: 10.1038/nature06250
[24]

Szpiech ZA, Hernandez RD. 2014. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Molecular Biology and Evolution 31(10):2824−27

doi: 10.1093/molbev/msu211
[25]

Bastarache L, Denny JC, Roden DM. 2022. Phenome-wide association studies. JAMA 327(1):75−76

doi: 10.1001/jama.2021.20356
[26]

Zeng H, Zhang W, Lin Q, Gao Y, Teng J, et al. 2024. PigBiobank: a valuable resource for understanding genetic and biological mechanisms of diverse complex traits in pigs. Nucleic Acids Research 52:D980−D89

doi: 10.1093/nar/gkad1080
[27]

Meng Y, Yuan C, Zhang J, Zhang F, Fu Q, et al. 2017. Stearic acid suppresses mammary gland development by inhibiting PI3K/Akt signaling pathway through GPR120 in pubertal mice. Biochemical and Biophysical Research Communications 491:192−97

doi: 10.1016/j.bbrc.2017.07.075
[28]

Rädler PD, Wehde BL, Wagner KU. 2017. Crosstalk between STAT5 activation and PI3K/AKT functions in normal and transformed mammary epithelial cells. Molecular and Cellular Endocrinology 451:31−39

doi: 10.1016/j.mce.2017.04.025
[29]

Alexander CM. 2021. Wnt signaling and mammary stem cells. Vitamins and Hormones 116:21−50

doi: 10.1016/bs.vh.2021.02.001
[30]

Rubin CJ, Megens HJ, Martinez Barrio A, Maqbool K, Sayyab S, et al. 2012. Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the United States of America 109:19529−36

doi: 10.1073/pnas.1217149109
[31]

Kemper KE, Saxton SJ, Bolormaa S, Hayes BJ, Goddard ME. 2014. Selection for complex traits leaves little or no classic signatures of selection. BMC Genomics 15:246

doi: 10.1186/1471-2164-15-246
[32]

Schiavo G, Galimberti G, Calò DG, Samorè AB, Bertolini F, et al. 2016. Twenty years of artificial directional selection have shaped the genome of the Italian Large White pig breed. Animal Genetics 47(2):181−91

doi: 10.1111/age.12392
[33]

Biswas S, Akey JM. 2006. Genomic insights into positive selection. Trends in Genetics 22:437−46

doi: 10.1016/j.tig.2006.06.005
[34]

Kim ES, Elbeltagy AR, Aboul-Naga AM, Rischkowsky B, Sayre B, et al. 2016. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116:255−64

doi: 10.1038/hdy.2015.94
[35]

López ME, Cádiz MI, Rondeau EB, Koop BF, Yáñez JM. 2021. Detection of selection signatures in farmed coho salmon (Oncorhynchus kisutch) using dense genome-wide information. Scientific Reports 11:9685

doi: 10.1038/s41598-021-86154-w
[36]

Lan D, Xiong X, Mipam TD, Fu C, Li Q, et al. 2018. Genetic diversity, molecular phylogeny, and selection evidence of Jinchuan yak revealed by whole-genome resequencing. G3 Genes|Genomes|Genetics 8(3):945−52

doi: 10.1534/g3.118.300572
[37]

Biegelmeyer P, Gulias-Gomes CC, Caetano AR, Steibel JP, Cardoso FF. 2016. Linkage disequilibrium, persistence of phase and effective population size estimates in Hereford and Braford cattle. BMC Genetics 17:32

doi: 10.1186/s12863-016-0339-8
[38]

Verardo LL, Silva FF, Lopes MS, Madsen O, Bastiaansen JWM, et al. 2016. Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways. Genetics, Selection, Evolution 48:9

doi: 10.1186/s12711-016-0189-x
[39]

van Son M, Lopes MS, Martell HJ, Derks MFL, Gangsei LE, et al. 2019. A QTL for number of teats shows breed specific effects on number of vertebrae in pigs: bridging the gap between molecular and quantitative genetics. Frontiers in Genetics 10:272

doi: 10.3389/fgene.2019.00272
[40]

Park J, Do KT, Park KD, Lee HK. 2023. Genome-wide association study using a single-step approach for teat number in Duroc, Landrace and Yorkshire pigs in Korea. Animal Genetics 54(6):743−51

doi: 10.1111/age.13357
[41]

Verardo LL, Lopes MS, Wijga S, Madsen O, Silva FF, et al. 2016. After genome-wide association studies: Gene networks elucidating candidate genes divergences for number of teats across two pig populations. Journal of Animal Science 94(4):1446−58

doi: 10.2527/jas.2015-9917
[42]

Liu Z, Li H, Zhong Z, Jiang S. 2022. A whole genome sequencing-based genome-wide association study reveals the potential associations of teat number in Qingping pigs. Animals 12(9):1057

doi: 10.3390/ani12091057
[43]

Pedrosa VB, Schenkel FS, Chen SY, Oliveira HR, Casey TM, et al. 2021. Genomewide association analyses of lactation persistency and milk production traits in Holstein cattle based on imputed whole-genome sequence data. Genes 12(11):1830

doi: 10.3390/genes12111830
[44]

Li RR, Hu HH, Feng X, Hu CL, Ma YF, et al. 2024. Polymorphism of ADAM12 DPP6 and PRKN genes and their associations with milk production traits in Holstein. Reproduction in Domestic Animals 59:e14497

doi: 10.1111/rda.14497
[45]

Jiang L, Liu J, Sun D, Ma P, Ding X, et al. 2010. Genome wide association studies for milk production traits in Chinese Holstein population. PLoS One 5:e13661

doi: 10.1371/journal.pone.0013661
[46]

Anantamongkol U, Charoenphandhu N, Wongdee K, Teerapornpuntakit J, Suthiphongchai T, et al. 2010. Transcriptome analysis of mammary tissues reveals complex patterns of transporter gene expression during pregnancy and lactation. Cell Biology International 34:67−74

doi: 10.1042/CBI20090023
[47]

Sheridan JM, Ritchie ME, Best SA, Jiang K, Beck TJ, et al. 2015. A pooled shRNA screen for regulators of primary mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 15:221

doi: 10.1186/s12885-015-1187-z
[48]

Roarty K, Shore AN, Creighton CJ, Rosen JM. 2015. Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium. The Journal of Cell Biology 208(3):351−66

doi: 10.1083/jcb.201408058
[49]

Kessenbrock K, Smith P, Steenbeek SC, Pervolarakis N, Kumar R, et al. 2017. Diverse regulation of mammary epithelial growth and branching morphogenesis through noncanonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America 114(12):3121−26

doi: 10.1073/pnas.1701464114
[50]

Sharma , Aggarwal , Sodhi , Kishore , Mishra , et al. 2014. Stage specific expression of ATP-binding cassette and solute carrier superfamily of transporter genes in mammary gland of riverine buffalo (Bubalus bubalis). Animal Biotechnology 25(3):200−9

doi: 10.1080/10495398.2013.839949
[51]

Wintermantel TM, Bock D, Fleig V, Greiner EF, Schütz G. 2005. The epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mammary lobuloalveolar development but is dispensable for milk production. Molecular Endocrinology 19(2):340−49

doi: 10.1210/me.2004-0068
[52]

Tian H, Luo J, Shi H, Chen X, Wu J, et al. 2020. Role of peroxisome proliferator-activated receptor-α on the synthesis of monounsaturated fatty acids in goat mammary epithelial cells. Journal of Animal Science 98(3):skaa062

doi: 10.1093/jas/skaa062
[53]

Bagci H, Laurin M, Huber J, Muller WJ, Côté JF. 2014. Impaired cell death and mammary gland involution in the absence of Dock1 and Rac1 signaling. Cell Death & Disease 5(8):e1375

doi: 10.1038/cddis.2014.338
[54]

Seifert A, Posern G. 2017. Tightly controlled MRTF-a activity regulates epithelial differentiation during formation of mammary acini. Breast Cancer Research 19:68

doi: 10.1186/s13058-017-0860-3
[55]

Melcher ML, Block I, Kropf K, Singh AK, Posern G. 2022. Interplay of the transcription factor MRTF-A and matrix stiffness controls mammary acinar structure and protrusion formation. Cell Communication and Signaling 20:158

doi: 10.1186/s12964-022-00977-2
[56]

Morlon A, Smahi A, Munnich A. 2006. New genes candidates for ectodermal dysplasia: TAB2, TRAF6 and TAK1. Medecine Sciences 22(3):229−30

doi: 10.1051/medsci/2006223229
[57]

Wickenden JA, Watson CJ. 2010. Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts. Breast Cancer Research 12:202

doi: 10.1186/bcr2558
[58]

Khan MZ, Khan A, Xiao J, Ma Y, Ma J, et al. 2020. Role of the JAK-STAT pathway in bovine mastitis and milk production. Animals 10(11):2107

doi: 10.3390/ani10112107
[59]

Boras-Granic K, Hamel PA. 2013. Wnt-signalling in the embryonic mammary gland. Journal of Mammary Gland Biology and Neoplasia 18(2):155−63

doi: 10.1007/s10911-013-9280-x