| [1] |
Yang Z, Liu Z, Xu H, Li Y, Huang S, et al. 2023. ArecaceaeMDB: a comprehensive multi-omics database for Arecaceae breeding and functional genomics studies. Plant Biotechnology Journal 21:11 doi: 10.1111/pbi.13945 |
| [2] |
Salum U, Foale M, Biddle J, Bazrafshan A, Adkins S. 2020. Towards the sustainability of the 'tree of life': an introduction. In Coconut Biotechnology: Towards the Sustainability of the'Tree of Life', eds Adkins S, Foale M, Bourdeix R, Nguyen Q, Biddle J. Cham: Springer. pp. 1–15. doi: 10.1007/978-3-030-44988-9_1 |
| [3] |
Adkins SW, Biddle JM, Bazrafshan A, Kalaipandian S. 2024. The coconut: botany, production and uses. UK: CABI. doi: 10.1079/9781789249736.0000 |
| [4] |
Mu Z, Tran BM, Xu H, Yang Z, Qamar UZ, et al. 2024. Exploring the potential application of coconut water in healthcare and biotechnology: a review. Beverage Plant Research 4:18 doi: 10.48130/bpr-0024-0009 |
| [5] |
Sun X, Kaleri GA, Mu Z, Feng Y, Yang Z, et al. 2024. Comparative Transcriptome Analysis Provides Insights into the Effect of Epicuticular Wax Accumulation on Salt Stress in Coconuts. Plants 13:141 doi: 10.3390/plants13010141 |
| [6] |
Foale M. 2003. Coconut Odyssey: The Bounteous possibilities of the tree of life. Australia: Australian Centre for International Agricultural Research. pp. 1–134 |
| [7] |
Mu Z. 2022. Overcoming bottlenecks in the pathway of clonal propagation of coconut (Cocos nucifera L.) Thesis. The University of Queensland, Australia. pp. 1−182 |
| [8] |
Mu Z, Yang S, Xu H, Yang Z, Haque MM, et al. 2024. The influence of maturity, storage, and embryo size on coconut callus induction success. Forests 15:764 doi: 10.3390/f15050764 |
| [9] |
Guisado-Pintado E, Navas F, Malvárez G. 2016. Ecosystem services and their benefits as coastal protection in highly urbanised environments. Journal of Coastal Research 75:1097−101 doi: 10.2112/SI75-220.1 |
| [10] |
Zhao HT, Lu TS, Zheng DY. 1994. Improvement of natural environments of coastal zone in South China. In Oceanology of China Seas, eds Zhou D, Liang YB, Zeng CK. Dordrecht: Springer. Volume 2. pp. 497−506. doi: 10.1007/978-94-011-0886-7_14 |
| [11] |
Cao M, Zou X, Warren M, Zhu H. 2006. Tropical forests of Xishuangbanna, China. Biotropica 38(3):306−09 doi: 10.1111/j.1744-7429.2006.00146.x |
| [12] |
Mu Z, Yang Z, Xu H, Khongmaluan M, Arikit S, et al. 2024. Prospects and challenges of elite coconut varieties in China: a case study of makapuno. Tropical Plants 3:e029 doi: 10.48130/tp-0024-0028 |
| [13] |
Dong L, Wang L, Zhao X, Zhao J, Zhao J, et al. 2023. The status quo and countermeasures of fruit industry brand development of Yunnan Province. Journal of Agriculture 13:102−06 |
| [14] |
Pratama BR, Tooy D, Kim J. 2024. Price competition and shifting demand: the relation between palm and coconut oil exports. Sustainability 16:101 doi: 10.3390/su16010101 |
| [15] |
NationMaster. 2019. Top Countries in Import of Coconuts (US Dollars - 1988 to 2019). www.nationmaster.com/nmx/ranking/import-of-coconuts |
| [16] |
Xiao H. 2023. Cool off the sultry heat and drink to good health. https://language.chinadaily.com.cn/a/201808/21/WS5b7b7f63a310add14f386e3c.html |
| [17] |
Kantachote D, Ratanaburee A, Hayisama-ae W, Sukhoom A, Nunkaew T. 2017. The use of potential probiotic Lactobacillus plantarum DW12 for producing a novel functional beverage from mature coconut water. Journal of Functional Foods 32:401−08 doi: 10.1016/j.jff.2017.03.018 |
| [18] |
Kamen Club. 2022. China Beverage Industry product report 2022. http://chinabeverage.org/uploads/fujian/20240617/4678b935b882660f68b2ef315c711099 |
| [19] |
Zhou L, Wu Y, Yang Y. 2021. Relationship between fatty acid accumulation and FatB gene expression in Cocos nucifera. Guihaia 41:1169−72 doi: 10.11931/guihaia.gxzw201911024 |
| [20] |
Mao Y. 2011. Research on coconut germplasm resource economy in Hainan. Thesis. Hainan University, China |
| [21] |
Mao Y, Fan G. 2011. Research on coconut germplasm resource in Hainan Province. Journal of Anhui Agriculture 39(07):439−42 doi: 10.3969/j.issn.0517-6611.2011.01.170 |
| [22] |
LeadLeo. 2023. 2022 China coconut whole industry chain market research report. www.leadleo.com/article/details?id=6487e1f1c3b18d74b1dcf048 |
| [23] |
Zhang J, Song F. 2016. Analysis of current situation and development strategy of coconut industry in China. China Agricultural Information 39:139−41 doi: 10.3969/j.issn.1672-0423.2016.06.094 |
| [24] |
Lebrun P, Berger A, Hodgkin T, Baudouin L. 2005. Biochemical and molecular methods for characterizing coconut diversity. Coconut Genetic Resources, eds Batugal P, Ramanatha RV, Oliver JT. Rome: IPGRI. pp. 225−47 |
| [25] |
Pan K, Wang W, Wang H, Fan H, Wu Y, et al. 2018. Genetic diversity and differentiation of the Hainan Tall coconut (Cocos nucifera L.) as revealed by inter-simple sequence repeat markers. Genetic Resources and Crop Evolution 65:1035−48 doi: 10.1007/s10722-017-0593-2 |
| [26] |
Tang H, Li D, Hou L. 2011. Genetic diversity of coconut cultivars in China by microsatellite (SSR) markers. Molecular Plant Breeding 2:12 |
| [27] |
Chen B. 2023. Experts see potential of coconuts in Hainan. www.chinadaily.com.cn/a/202312/18/WS657f97dca31040ac301a82dd.html |
| [28] |
Guo Q, Wang Y, Zou J, Jing H, Li D. 2023. Efficient isolation and transformation of protoplasts in coconut endosperm and leaves for gene function studies. Tropical Plants 2:16 doi: 10.48130/TP-2023-0016 |
| [29] |
Lu K, Hou Y. 2020. Analysis and development path of coconut industry in Hainan Province. Guangdong Agricultural Science 47:145−51 doi: 10.16768/j.issn.1004-874X.2020.06.019 |
| [30] |
Qiu S, Wang H, Gong S, Liu D. 2024. A study on the development of coconut industry in Wenchang City bsed on SWOT-AHP analysis. Chinese Journal of Tropical Agriculture 44(06):98−104 |
| [31] |
Xu G, Qiu F, Zhou J, Zheng F, Zheng L, et al. 2020. First report of Curvularia oryzae causing leaf spot of coconut seedling in China. Plant Disease 104:574 doi: 10.1094/PDIS-08-19-1575-PDN |
| [32] |
Cheng Q, Wang L. 2007. Chinese coconut history. Modern Agricultural Science and Technology 15:222−25 |
| [33] |
Xu W. 1990. Coconut and cultivation in Xishuangbanna. Yunnan Forestry 1990:20 |
| [34] |
He X, Gao S, Zhang Y, Tao L, Tao L, et al. 2014. ISSR analysis on genetic diversity of coconut (Cocos nucifera L.) germplasm resources in Yunnan. Chinese Agricultural Science Bulletin 30:157−62 |
| [35] |
Duan B, Zhu G, A H, Zhao S, Ni S. 2014. Preliminary investigation on major diseases and pests of coconut in Yunnan Province. Tropical Agricultural Science & Technology 37:23−26 |
| [36] |
Li P, Tan H, Hou D. 1997. Climatic and environmental changes along the South China coast over the past 2000 years. Quaternary Sciences 1997:86−94 |
| [37] |
Cheng H, Li H, Zhou Q, Wang C. 2011. Investigation on germplasm resources of coconut in Guangxi and Guangdong. China Tropical Agriculture 2011:48−50 |
| [38] |
Chen H, Chen Y, Lin C, Zhou Q, Wang C, et al. 2012. Potential geographic distributions of Cocos nucifera (L.) in China predicted by Open Modeller-GARP. Journal of Southern Agriculture 43:1525−29 |
| [39] |
Lu K. 2017. Analysis of production and trade development situation of Chinese coconut industry. World Tropical Agriculture Information 2017:1−6 doi: 10.3969/j.issn.1009-1726.2017.09.001 |
| [40] |
Tan H. 2004. Economic balance of crops and fruits production by K, Mg and S fertilizers application in subtropical red acid soil of Guangxi province, China. Tropics 13:287−91 doi: 10.3759/tropics.13.287 |
| [41] |
Qin W, Lv C, Li C, Huang S, Peng Z. 2010. Research of pests of coconut in China. Chinese Agricultural Science Bulletin 26:52−57 |
| [42] |
Qin W, Lv C, Li C, Huang S, Ma Z, et al. 2009. Pests of coconut in China. Entomological Journal of East China 18:130−38 |
| [43] |
Lv B, Yan Z, Jin Q, Wen H, Fu Y, et al. 2013. Exotic pest alert: Opisina arenosella (Lepidoptera: Oecophoridae). Journal of Biosafety 22:17−22 doi: 10.3969/j.issn.2095-1787.2013.01.003 |
| [44] |
Yan W, Liu L, Li C, Huang S, Lv B, et al. 2015. Prediction of suitable habitat for the coconut black-headed caterpillar, Opisina arenosella (Walker) in China. Chinese Journal of Applied Entomology 52(02):454−60 doi: 10.7679/j.issn.2095?1353.2015.051 |
| [45] |
Tu Y, Yang G. 1996. Agroclimatic zones and agricultural allocation in Guangdong. Tropical Geography 1996:212−219 |
| [46] |
Xu X. 1964. The dividing line between tropical and subtropical in South China is discussed from the perspective of geobotany. Journal of Plant Ecology 1964:137−39 |
| [47] |
Cheng H, Cheng Y, Sun X, Zhou Q, Wang C, Li H. 2011. A preliminary survey of Cocos nucifera diseases and insect pests in Guangxi Zhuang Autonomic Region and Guangdong province. Guangdong Forestry Science and Technology 38:73−75 doi: 10.3969/j.issn.1004-874X.2011.10.030 |
| [48] |
Liu J, Dong S, Li Y, Mao Q, Li J, et al. 2012. Spatial Analysis on the contribution of industrial structure change to regional energy efficiency—a case study of 31 provinces in mainland China. Journal of Resources and Ecology 3:129−37 |
| [49] |
Chiu R, Lai B, Chen B, Shiau R. 1985. Introduction, propagation and liberation of a pupal parastoid, Tetraslichus brontispae, for the control of the coconut leaf beetle in Taiwan. Journal of Taiwan Agricultural Research 34(2):213−22 |
| [50] |
Tzeng SJ, Sun EJ, Hsiao WW. 2010. First report of fruit basal rot by Ceratocystis paradoxa on coconut in Taiwan. Plant Disease 94(4):487 doi: 10.1094/PDIS-94-4-0487C |
| [51] |
Xiong J, Wu H, Ye J. 2017. Variation of structures of ingredients of desiccated coconut during hydrolysis by hydrochloric acid at low temperature. Food Science and Technology 37:593−98 doi: 10.1590/1678-457x.23316 |
| [52] |
Perera L, Manimekalai R. 2021. Characterization of genetic diversity using molecular markers. The Coconut Genome, eds Rajesh MK, Ramesh SV, Perera L, Kole C. Cham: Springer. pp. 77–90. doi:10.1007/978-3-030-76649-8_5 |
| [53] |
Niral V, Jerard B. 2019. Botany, origin and genetic resources of coconut. In The Coconut Palm (Cocos nucifera L.) - Research and Development Perspectives, eds Krishnakumar V, Thampan P, Nair M. Singapore: Springer. pp. 57–111. doi: 10.1007/978-981-13-2754-4_3 |
| [54] |
Yousefi K, Abdullah SNA, Hatta MAM, Ling KL. 2023. Genomics and transcriptomics reveal genetic contribution to population diversity and specific traits in coconut. Plants 12:1913 doi: 10.3390/plants12091913 |
| [55] |
Gunn BF, Baudouin L, Beulé T, Ilbert P, Duperray C, et al. 2015. Ploidy and domestication are associated with genome size variation in Palms. American Journal of Botany 102:1625−33 doi: 10.3732/ajb.1500164 |
| [56] |
Alsaihati B, Liu W, Lin Q, Al-Mssallem IS. 2014. Coconut genome de novo sequencing. Proc. International Plant and Animal Genome Conference XXII 2014, San Diego, CA , 2014. San Diego, CA: ResearchGate. 6: 38−47 |
| [57] |
Yang Y, Bocs S, Fan H, Armero A, Baudouin L, et al. 2021. Coconut genome assembly enables evolutionary analysis of palms and highlights signaling pathways involved in salt tolerance. Communications Biology 4:105 doi: 10.1038/s42003-020-01593-x |
| [58] |
Xiao Y, Xu P, Fan H, Baudouin L, Xia W, et al. 2017. The genome draft of coconut (Cocos nucifera). GigaScience 6:gix095 doi: 10.1093/gigascience/gix095 |
| [59] |
Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, et al. 2011. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nature Biotechnology 29:521−27 doi: 10.1038/nbt.1860 |
| [60] |
Singh R, Ong-Abdullah M, Low ETL, Manaf MAA, Rosli R, et al. 2013. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500:335−39 doi: 10.1038/nature12309 |
| [61] |
Lantican DV, Strickler SR, Canama AO, Gardoce RR, Mueller LA, et al. 2019. De novo genome sequence assembly of dwarf coconut (Cocos nucifera L. 'Catigan Green Dwarf') provides insights into genomic variation between coconut types and related palm species. G3 Genes|Genomes|Genetics 9:2377−93 doi: 10.1534/g3.119.400215 |
| [62] |
Muliyar RK, Chowdappa P, Behera SK, Kasaragod S, Gangaraj KP, et al. 2020. Assembly and annotation of the nuclear and organellar genomes of a dwarf coconut (Chowghat Green Dwarf) possessing enhanced disease resistance. OMICS: A Journal of Integrative Biology 24:726−42 doi: 10.1089/omi.2020.0147 |
| [63] |
Wang S, Xiao Y, Zhou ZW, Yuan J, Guo H, et al. 2021. High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height. Genome Biology 22:304 doi: 10.1186/s13059-021-02522-9 |
| [64] |
Biddle J, Nguyen Q, Mu ZH, Foale M, Adkins S. 2020. Germplasm reestablishment and seedling production: embryo culture. Coconut Biotechnology: Towards the Sustainability of the 'Tree of Life', eds Adkins S, Foale M, Bourdeix R, Nguyen Q, Biddle J. Cham: Springer. pp. 199–225. doi: 10.1007/978-3-030-44988-9_10 |
| [65] |
Sisunandar, Sopade PA, Samosir YMS, Rival A, Adkins SW. 2012. Conservation of coconut (Cocos nucifera L.) germplasm at sub-zero temperature. CryoLetters 33:465−75 |
| [66] |
Panis B, Lambardi M. 2006. Status of cryopreservation technologies in plants (crops and forest trees). The Role of Biotechnology 2:43−54 |
| [67] |
Sisunandar S. 2013. Cryopreservation for Germplasm Conservation: Progress Report on Indonesian Elite Mutant Coconut "Kopyor". Proc. Proceeding International Conference on Global Resource Conservation, Universitas Brawijaya Malang, 2013. Indonesia: Agricultural and Food Sciences. pp. 83−87 |
| [68] |
Bajaj YPS. 1984. Induction of growth in frozen embryos of coconut and ovules of citrus. Current Science 53:1215−16 |
| [69] |
Bourdeix R, Adkins S, Johnson V, Perera L, Sisunandar. 2020. In situ and ex situ conservation of coconut genetic resources. In Coconut Biotechnology: Towards the Sustainability of the 'Tree of Life', eds Adkins S, Foale M, Bourdeix R, Nguyen Q, Biddle J. Cham: Springer. pp. 51–75. doi: 10.1007/978-3-030-44988-9_4 |
| [70] |
Hornung R, Domas R, Lynch PT. 2001. Cryopreservation of plumular explants of coconut (Cocos nucifera L.) to support programmes for mass clonal propagation through somatic embryogenesis. Cryo Letters 22:211−20 |
| [71] |
Bandupriya H, Fernando S, Verdeil J, Malaurie B. 2007. Cryopreservation of encapsulated plumules of coconut: effect of transport/store conditions. Proc. Proceedings Asia Pacific Conference on Plant Tissue and Agribiotechnology (APaCPA), Kuala Lumpur, 2007. Kuala Lumpur: ResearchGate. Volume 18. pp. 135−37 |
| [72] |
Karun A, Sjini KK, Niral V, Amarnth CH, Remya P, et al. 2014. Coconut (Cocos nucifera L. ) pollen cryopreservation. Cryo Letters 35:407−17 |
| [73] |
Nguyen QT, Bandupriya HDD, López-Villalobos A, Sisunandar S, Foale M, et al. 2015. Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta 242:1059−76 doi: 10.1007/s00425-015-2362-9 |
| [74] |
Adkins S, Nguyen QT, Foale M. 2016. Improving the availability of valuable coconut germplasm using tissue culture techniques. Cord 32:27−36 doi: 10.37833/cord.v32i2.33 |
| [75] |
Nguyen QT, Bandupriya HDD, Foale M, Adkins SW. 2016. Biology, propagation and utilization of elite coconut varieties (makapuno and aromatics). Plant Physiology and Biochemistry 109:579−89 doi: 10.1016/j.plaphy.2016.11.003 |
| [76] |
Cueto CA, Johnson VB, Engelmann F, Kembu A, Konan JL, et al. 2012. Technical guide-lines for the safe movement and duplication of coconut (Cocos nucifera L.) germplasm us-ing embryo culture transfer protocols. Montpellier: Bioversity International. pp. 4−70 |
| [77] |
Samosir YMS, Godwin ID, Adkins SW. 1999. A new technique for coconut (Cocos nucifera) germplasm collection from remote sites: culturability of embryos following low-temperature incubation. Australian Journal of Botany 47:69−75 doi: 10.1071/BT97067 |
| [78] |
Samosir YMS, Adkins S. 2014. Improving acclimatization through the photoautotrophic culture of coconut (Cocos nucifera) seedlings: an in vitro system for the efficient exchange of germplasm. In Vitro Cellular & Developmental Biology - Plant 50:493−501 doi: 10.1007/s11627-014-9599-z |
| [79] |
Zhang R, Cao H, Sun C, Martin JJJ. 2021. Characterization of morphological and fruit quality traits of coconut (Cocos nucifera L.) germplasm. HortScience 56:961−69 doi: 10.21273/HORTSCI15887-21 |
| [80] |
Ikeuchi M, Sugimoto K, Iwase A. 2013. Plant callus: mechanisms of induction and repression. The Plant Cell 25:3159−73 doi: 10.1105/tpc.113.116053 |
| [81] |
Rajesh M, Radha E, Sajini K, Anitha K. 2014. Polyamine-induced somatic embryogenesis and plantlet regeneration in vitro from plumular explants of dwarf cultivars of coconut (Cocos nucifera). Indian Journal of Agricultural Sciences 84:527−30 |
| [82] |
Biddle J, Nguyen Q, Mu ZH, Foale M, Adkins S. 2020. Germplasm reestablishment and seedling production: embryo culture. In Coconut Biotechnology: Towards the Sustainability of the 'Tree of Life', eds Adkins S, Foale M, Bourdeix R, Nguyen Q, Biddle J. Cham: Springer. pp. 199–225. doi: 10.1007/978-3-030-44988-9_10 |
| [83] |
Salo EN, Novero A. 2020. Identification and characterisation of endophytic bacteria from coconut (Cocos nucifera) tissue culture. Tropical Life Sciences Research 31:57−68 doi: 10.21315/tlsr2020.31.1.4 |
| [84] |
Hornung R, Verdeil JL. 1999. Somatic embryogenesis in coconut from immature inflorescence explants. In Current Advances in Coconut Biotechnology, eds Oropeza C, Verdeil JL, Ashburner GR, Cardeña R, Santamaría JM. Dordrecht: Springer. Vol. 35. pp. 297–308. doi: 10.1007/978-94-015-9283-3_22 |
| [85] |
Litz RE, PliegoAlfaro F, Hormaza JI. 2020. Biotechnology of fruit and nut crops, 2nd edition. UK: CABI. doi: 10.1079/9781780648279.0000# |
| [86] |
Hornung R. 1995. Initiation of callogenesis in coconut palm (Cocos nucifera L.). In Lethal Yellowing: Research and Practical Aspects, eds Oropeza C, Howard FW, Ashburner GR. Dordrecht: Springer. Vol. 5. pp. 203–15. doi: 10.1007/978-94-011-0433-3_17 |
| [87] |
Chan JL, Sáenz L, Talavera C, Hornung R, Robert M, et al. 1998. Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Reports 17:515−21 doi: 10.1007/s002990050434 |
| [88] |
Hornung R. 1995. Initiation of callogenesis in coconut palm (Cocos nucifera L.). Lethal Yellowing: Research and Practical Aspects, eds Oropeza C, Howard FW, Ashburner GR. Dordrecht: Springer. pp. 203–15. doi: 10.1007/978-94-011-0433-3_17 |
| [89] |
Azpeitia A. 2003. Estudio de diferentes estrategias para promover la embriogénesis somática en cocotero (Cocos nucifera L.) a partir de explantes de plúmula. Thesis. Centro de Investigación Científica de Yucatán (CICY), Mérida, México. |
| [90] |
Loyola-Vargas VM, Ochoa-Alejo N. 2018. An introduction to plant tissue culture: advances and perspectives. In Plant Cell Culture Protocols, eds Loyola-Vargas V, Ochoa-Alejo N. New York, NY: Humana Press. Vol 1815. pp. 3–13. doi: 10.1007/978-1-4939-8594-4_1 |
| [91] |
Perera PIP, Yakandawala DMD, Verdeil JL , Hocher V, Weerakoon LK. 2008. Somatic embryogenesis and plant regeneration from unfertilised ovary explants of coconut (Cocos nucifera L.). Tropical Agricultural Research 20:226−33 |
| [92] |
PérezNúñez MT, Chan JL, Sáenz L, González T, Verdeil JL, et al. 2006. Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. In Vitro Cellular & Developmental Biology - Plant 42:37−43 doi: 10.1079/IVP2005722 |
| [93] |
Zhang D, Li Z, Htwe YM, Shi P, Wei X, et al. 2024. Insights into the developmental trajectories of zygotic embryo, embryogenic callus and somatic embryo in coconut by single-cell transcriptomic analysis. Industrial Crops and Products 212:118338 doi: 10.1016/j.indcrop.2024.118338 |
| [94] |
Khan FS, Li Z, Shi P, Zhang D, Htwe YM, et al. 2023. Transcriptional regulations and hormonal signaling during somatic embryogenesis in the coconut tree: an insight. Forests 14:1800 doi: 10.3390/f14091800 |
| [95] |
Mu Z, Li Z, Bazrafshan A, Kalaipandian S, Kong EYY, et al. 2024. Temporary immersion culture: a potential in vitro culture method for the clonal propagation of coconut. Horticulturae 10:946 doi: 10.3390/horticulturae10090946 |