[1]

Chen JT, Lidén M, Huang XH, Zhang L, Zhang XJ, et al. 2023. An updated classification for the hyper-diverse genus Corydalis (Papaveraceae: Fumarioideae) based on phylogenomic and morphological evidence. Journal of Integrative Plant Biology 65:2138−56

doi: 10.1111/jipb.13499
[2]

Wu ZY, Zhuang X, Su ZY. 1999. Corydalis DC. In Flora Reipublicae Popularis Sinicae, ed. Wu ZY. Volume 32. Beijing: Science Press

[3]

Zhang ML, Su ZY, Lidén M. 2008. Corydalis DC. In Flora of China, eds., Wu ZY, Raven PH, Hong DY. Volume 7. Beijing: Science Press and St. Louis, MO: Missouri Botanical Garden Press

[4]

Pérez-Gutiérrez MA, Romero-García AT, Fernández MC, Blanca G, Salinas-Bonillo MJ, et al. 2015. Evolutionary history of fumitories (subfamily Fumarioideae, Papaveraceae): an old story shaped by the main geological and climatic events in the Northern Hemisphere. Molecular Phylogenetics and Evolution 88:75−92

doi: 10.1016/j.ympev.2015.03.026
[5]

Peng HW, Xiang KL, Erst AS, Lian L, Ortiz RDC, et al. 2023. A complete genus-level phylogeny reveals the Cretaceous biogeographic diversification of the poppy family. Molecular Phylogenetics and Evolution 181:107712

doi: 10.1016/j.ympev.2023.107712
[6]

Peng HW, Xiang KL, Erst AS, Erst TV, Jabbour F, et al. 2023. The synergy of abiotic and biotic factors correlated with diversification of Fumarioideae (Papaveraceae) in the Cenozoic. Molecular Phylogenetics and Evolution 186:107868

doi: 10.1016/j.ympev.2023.107868
[7]

Liu YY, Cao JL, Kan SL, Wang PH, Wang JL, et al. 2024. Phylogenomic analyses sheds new light on the phylogeny and diversification of Corydalis DC. in Himalaya-Hengduan Mountains and adjacent regions. Molecular Phylogenetics and Evolution 193:108023

doi: 10.1016/j.ympev.2024.108023
[8]

Zou Y, Wang J, Peng D, Zhang X, Tembrock LR, et al. 2023. Multi-integrated genomic data for Passiflora foetida provides insights into genome size evolution and floral development in Passiflora. Molecular Horticulture 3:27

doi: 10.1186/s43897-023-00076-x
[9]

Lan L, Leng L, Liu W, Ren Y, Reeve W, et al. 2024. The haplotype-resolved telomere-to-telomere carnation (Dianthus caryophyllus) genome reveals the correlation between genome architecture and gene expression. Horticulture Research 11:uhad244

doi: 10.1093/hr/uhad244
[10]

Xia XM, Du HL, Hu XD, Wu JJ, Yang FS, et al. 2024. Genomic insights into adaptive evolution of the species-rich cosmopolitan plant genus Rhododendron. Cell Reports 43:114745

doi: 10.1016/j.celrep.2024.114745
[11]

Xu D, Ye Z, Huang Y, Zhu K, Xu H, et al. 2024. Haplotype-resolved genome assembly of Corydalis yanhusuo, a traditional Chinese medicine with unusual telomere motif. Horticulture Research 11:uhad296

doi: 10.1093/hr/uhad296
[12]

Xu Z, Li Z, Ren F, Gao R, Wang Z, et al. 2022. The genome of Corydalis reveals the evolution of benzylisoquinoline alkaloid biosynthesis in Ranunculales. Plant Journal 111:217−30

doi: 10.1111/tpj.15788
[13]

Deng AP, Zhang Y, Zhou L, Kang CZ, Lv CG, et al. 2021. Systematic review of the alkaloid constituents in several important medicinal plants of the genus Corydalis. Phytochemistry 183:112644

doi: 10.1016/j.phytochem.2020.112644
[14]

Fu XY, Liang WZ, Tu GS. 1986. Alkaloid from dongyang corydalis yanhusuo. Acta Pharmaceutica Sinica B 21:447−53

[15]

Hussain SF, Siddiqui MT. 1992. Alkaloidal constituents of Corydalis stewartii. Planta Medica 58:108

doi: 10.1055/s-2006-961402
[16]

Xu D, Lin H, Tang Y, Huang L, Xu J, et al. 2021. Integration of full-length transcriptomics and targeted metabolomics to identify benzylisoquinoline alkaloid biosynthetic genes in Corydalis yanhusuo. Horticulture Research 8:16

doi: 10.1038/s41438-020-00450-6
[17]

Zhao X, Pan Y, Tan J, Lv H, Wang Y, et al. 2024. Metabolomics and transcriptomics reveal the mechanism of alkaloid synthesis in Corydalis yanhusuo bulbs. PLoS ONE 19:e0304258

doi: 10.1371/journal.pone.0304258
[18]

Liu X, Liu Y, Huang P, Ma Y, Qing Z, et al. 2017. The genome of medicinal plant Macleaya cordata provides new insights into benzylisoquinoline alkaloids metabolism. Molecular Plant 10:975−89

doi: 10.1016/j.molp.2017.05.007
[19]

Yamada Y, Hirakawa H, Hori K, Minakuchi Y, Toyoda A, et al. 2021. Comparative analysis using the draft genome sequence of California poppy (Eschscholzia californica) for exploring the candidate genes involved in benzylisoquinoline alkaloid biosynthesis. Bioscience, Biotechnology, and Biochemistry 85:851−59

doi: 10.1093/bbb/zbaa091
[20]

Desgagné-Penix I, Facchini PJ. 2012. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. The Plant Journal 72:331−44

doi: 10.1111/j.1365-313X.2012.05084.x
[21]

Singh A, Menéndez-Perdomo IM, Facchini PJ. 2019. Benzylisoquinoline alkaloid biosynthesis in opium poppy: an update. Phytochemistry Reviews 18:1457−82

doi: 10.1007/s11101-019-09644-w
[22]

Guo L, Winzer T, Yang X, Li Y, Ning Z, et al. 2018. The opium poppy genome and morphinan production. Science 362:343−47

doi: 10.1126/science.aat4096
[23]

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884−90

doi: 10.1093/bioinformatics/bty560
[24]

Dolezel J, Bartos J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95:99−110

doi: 10.1093/aob/mci005
[25]

Kokot M, Dlugosz M, Deorowicz S. 2017. KMC 3: counting and manipulating k-mer statistics. Bioinformatics 33:2759−61

doi: 10.1093/bioinformatics/btx304
[26]

Rhyker Ranallo-Benavidez T, Jaron KS, Schatz MC. 2020. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature Communications 11:1432

doi: 10.1038/s41467-020-14998-3
[27]

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype resolved de-novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170−75

doi: 10.1038/s41592-020-01056-5
[28]

Guan D, McCarthy SA, Wood J, Howe K, Wang YD, et al. 2020. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36:2896−98

doi: 10.1093/bioinformatics/btaa025
[29]

Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, et al. 2016. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems 3:95−98

doi: 10.1016/j.cels.2016.07.002
[30]

Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92−95

doi: 10.1126/science.aal3327
[31]

Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, et al. 2016. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Systems 3:99−101

doi: 10.1016/j.cels.2015.07.012
[32]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754−60

doi: 10.1093/bioinformatics/btp324
[33]

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094−100

doi: 10.1093/bioinformatics/bty191
[34]

Manni M, Berkeley MR, Seppey M, Zdobnov EM. 2021. BUSCO: Assessing genomic data quality and beyond. Current Protocols 1:e323

doi: 10.1002/cpz1.323
[35]

Xu Z, Wang H. 2007. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research 35:W265−W268

doi: 10.1093/nar/gkm286
[36]

Han Y, Wessler SR. 2010. MITE-hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Research 38:e199

doi: 10.1093/nar/gkq862
[37]

Stanke M, Keller O, Gunduz I, Hayes A, Waack S, et al. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research 34:W435−W439

doi: 10.1093/nar/gkl200
[38]

Korf I. 2004. Gene finding in novel genomes. BMC Bioinformatics 5:59

doi: 10.1186/1471-2105-5-59
[39]

Majoros WH, Pertea M, Salzberg SL. 2004. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20:2878−79

doi: 10.1093/bioinformatics/bth315
[40]

Lomsadze A, Burns PD, Borodovsky M. 2014. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Research 42:e119

doi: 10.1093/nar/gku557
[41]

Keilwagen J, Hartung F, Grau J. 2019. GeMoMa: Homology-based gene prediction utilizing intron position conservation and RNA-seq data. Methods in Molecular Biology 1962:161−77

doi: 10.1007/978-1-4939-9173-0_9
[42]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52

doi: 10.1038/nbt.1883
[43]

Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, et al. 2003. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Research 31:5654−66

doi: 10.1093/nar/gkg770
[44]

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25:955−64

doi: 10.1093/nar/25.5.955
[45]

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16:157

doi: 10.1186/s13059-015-0721-2
[46]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80

doi: 10.1093/molbev/mst010
[47]

Stamatakis A. 2014. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312−13

doi: 10.1093/bioinformatics/btu033
[48]

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:1586−91

doi: 10.1093/molbev/msm088
[49]

De Bie T, Cristianini N, Demuth JP, Hahn MW. 2006. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22:1269−71

doi: 10.1093/bioinformatics/btl097
[50]

Sun P, Jiao B, Yang Y, Shan L, Li T, et al. 2022. WGDI: a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Molecular Plant 15:1841−51

doi: 10.1016/j.molp.2022.10.018
[51]

Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[52]

Tang H, Krishnakumar V, Zeng X, Xu Z, Taranto A, et al. 2024. JCVI: A versatile toolkit for comparative genomics analysis. iMeta 3:e211

doi: 10.1002/imt2.211
[53]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[54]

Goel M, Sun H, Jiao WB, Schneeberger K. 2019. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology 20(1):277

doi: 10.1186/s13059-019-1911-0
[55]

Jiao YN, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97−100

doi: 10.1038/nature09916
[56]

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74

doi: 10.1093/molbev/msu300
[57]

The French–Italian Public Consortium for Grapevine Genome Characterization. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463−67

doi: 10.1038/nature06148
[58]

Amborella Genome Project. The Amborella genome and the evolution of flowering plants. Science 2013: 342

[59]

Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics 14(2):178−92

doi: 10.1093/bib/bbs017
[60]

Ikezawa N, Iwasa K, Sato F. 2009. CYP719A subfamily of cytochrome P450 oxygenases and isoquinoline alkaloid biosynthesis in Eschscholzia californica. Plant Cell Reports 28:123−33

doi: 10.1007/s00299-008-0624-8
[61]

Hori K, Yamada Y, Purwanto R, Minakuchi Y, Toyoda A, et al. 2018. Mining of the uncharacterized cytochrome P450 genes involved in alkaloid biosynthesis in California poppy using a draft genome sequence. Plant and Cell Physiology 59:222−33

doi: 10.1093/pcp/pcx210
[62]

Samanani N, Facchini PJ. 2001. Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy. Planta 213:898−906

doi: 10.1007/s004250100581
[63]

Huang H, Liang J, Tan Q, Ou L, Li X, et al. 2021. Insights into triterpene synthesis and unsaturated fatty-acid accumulation provided by chromosomal-level genome analysis of Akebia trifoliata subsp. australis. Horticulture Research 8:33

doi: 10.1038/s41438-020-00458-y
[64]

Jiang Z, Tu L, Yang W, Zhang Y, Hu T, et al. 2021. The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis. Plant Communications 2:100113

doi: 10.1016/j.xplc.2020.100113
[65]

Han X, Li C, Sun S, Ji J, Nie B, et al. 2022. The chromosome-level genome of female ginseng (Angelica sinensis) provides insights into molecular mechanisms and evolution of coumarin biosynthesis. The Plant Journal 112:1224−37

doi: 10.1111/tpj.16007
[66]

Yang X, Gao S, Guo L, Wang B, Jia Y, et al. 2021. Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway. Nature Communications 12:6030

doi: 10.1038/s41467-021-26330-8
[67]

Liu Y, Wang B, Shu S, Li Z, Song C, et al. 2021. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nature Communications 12:3276

doi: 10.1038/s41467-021-23611-0
[68]

Wang Y, Zhang H, Ri HC, An ZY, Wang X, et al. 2022. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata. Nature Communications 13:2224

doi: 10.1038/s41467-022-29908-y
[69]

Qiu S, Wang J, Pei T, Gao R, Xiang C, et al. 2025. Functional evolution and diversification of the CYP82D subfamily members shape flavonoid diversification in the genus Scutellaria. Plant Communications 6:101134

doi: 10.1016/j.xplc.2024.101134