| [1] |
Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, et al. 2019. Atherosclerosis. Nature Reviews Disease Primers 5:56 doi: 10.1038/s41572-019-0106-z |
| [2] |
Lusis AJ. 2000. Atherosclerosis. Nature 407:233−41 doi: 10.1038/35025203 |
| [3] |
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, et al. 2022. Pathophysiology of atherosclerosis. International Journal of Molecular Sciences 23:3346 doi: 10.3390/ijms23063346 |
| [4] |
Luca AC, David SG, David AG, \Țarcă V, Pădureț IA, et al. 2023. Atherosclerosis from newborn to adult-epidemiology, pathological aspects, and risk factors. Life 13:2056 doi: 10.3390/life13102056 |
| [5] |
Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. 2016. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circulation Research 118:535−46 doi: 10.1161/CIRCRESAHA.115.307611 |
| [6] |
Falk E. 2006. Pathogenesis of atherosclerosis. Journal of the American College of Cardiology 47:C7−C12 doi: 10.1016/j.jacc.2005.09.068 |
| [7] |
Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. 2014. Atherosclerosis: process, indicators, risk factors and new hopes. International Journal of Preventive Medicine 5:927−46 |
| [8] |
Insull W. 2009. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. The American Journal of Medicine 122:S3−S14 doi: 10.1016/j.amjmed.2008.10.013 |
| [9] |
Gusev E, Sarapultsev A. 2023. Atherosclerosis and inflammation: insights from the theory of general pathological processes. International Journal of Molecular Sciences 24:7910 doi: 10.3390/ijms24097910 |
| [10] |
Zhang Z, Yue P, Lu T, Wang Y, Wei Y, et al. 2021. Role of lysosomes in physiological activities, diseases, and therapy. Journal of Hematology & Oncology 14:79 doi: 10.1186/s13045-021-01087-1 |
| [11] |
Xu H, Ren D. 2015. Lysosomal physiology. Annual Review of Physiology 77:57−80 doi: 10.1146/annurev-physiol-021014-071649 |
| [12] |
Appelqvist H, Wäster P, Kågedal K, Öllinger K. 2013. The lysosome: from waste bag to potential therapeutic target. Journal of Molecular Cell Biology 5:214−26 doi: 10.1093/jmcb/mjt022 |
| [13] |
Marques ARA, Ramos C, Machado-Oliveira G, Vieira OV. 2021. Lysosome (dys)function in atherosclerosis-a big weight on the shoulders of a small organelle. Frontiers in Cell and Developmental Biology 9:658995 doi: 10.3389/fcell.2021.658995 |
| [14] |
Bhat OM, Li PL. 2021. Lysosome function in cardiovascular diseases. Cellular Physiology and Biochemistry 55:277−300 doi: 10.33594/000000373 |
| [15] |
Emanuel R, Sergin I, Bhattacharya S, Turner J, Epelman S, et al. 2014. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arteriosclerosis, Thrombosis, and Vascular Biology 34:1942−52 doi: 10.1161/ATVBAHA.114.303342 |
| [16] |
Wojtasińska A, Frąk W, Lisińska W, Sapeda N, Młynarska E, et al. 2023. Novel insights into the molecular mechanisms of atherosclerosis. International Journal of Molecular Sciences 24:13434 doi: 10.3390/ijms241713434 |
| [17] |
Zhang X, Misra SK, Moitra P, Zhang X, Jeong SJ, et al. 2023. Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis. Autophagy 19:886−903 doi: 10.1080/15548627.2022.2108252 |
| [18] |
Skeyni A, Pradignac A, Matz RL, Terrand J, Boucher P. 2024. Cholesterol trafficking, lysosomal function, and atherosclerosis. American Journal of Physiology Cell Physiology 326:C473−86 doi: 10.1152/ajpcell.00415.2023 |
| [19] |
Popa-Fotea NM, Ferdoschi CE, Micheu MM. 2023. Molecular and cellular mechanisms of inflammation in atherosclerosis. Frontiers in Cardiovascular Medicine 10:1200341 doi: 10.3389/fcvm.2023.1200341 |
| [20] |
Trivedi PC, Bartlett JJ, Pulinilkunnil T. 2020. Lysosomal biology and function: modern view of cellular debris bin. Cells 9:1131 doi: 10.3390/cells9051131 |
| [21] |
Saftig P, Klumperman J. 2009. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature Reviews Molecular Cell Biology 10:623−35 doi: 10.1038/nrm2745 |
| [22] |
Yang C, Wang X. 2021. Lysosome biogenesis: regulation and functions. The Journal of Cell Biology 220:e202102001 doi: 10.1083/jcb.202102001 |
| [23] |
Patra S, Patil S, Klionsky DJ, Bhutia SK. 2023. Lysosome signaling in cell survival and programmed cell death for cellular homeostasis. Journal of Cellular Physiology 238:287−305 doi: 10.1002/jcp.30928 |
| [24] |
Gisterå A, Ketelhuth DFJ, Malin SG, Hansson GK. 2022. Animal models of atherosclerosis-supportive notes and tricks of the trade. Circulation Research 130:1869−87 doi: 10.1161/CIRCRESAHA.122.320263 |
| [25] |
Lee YT, Laxton V, Lin HY, Chan YWF, Fitzgerald-Smith S, et al. 2017. Animal models of atherosclerosis. Biomedical Reports 6:259−66 doi: 10.3892/br.2017.843 |
| [26] |
Emini Veseli B, Perrotta P, De Meyer GRA, Roth L, Van der Donckt C, et al. 2017. Animal models of atherosclerosis. European Journal of Pharmacology 816:3−13 doi: 10.1016/j.ejphar.2017.05.010 |
| [27] |
Fuster JJ, Castillo AI, Zaragoza C, Ibáñez B, Andrés V. 2012. Animal models of atherosclerosis. Progress in Molecular Biology and Translational Science 105:1−23 doi: 10.1016/B978-0-12-394596-9.00001-9 |
| [28] |
van der Vaart JI, van Eenige R, Rensen PCN, Kooijman S. 2024. Atherosclerosis: an overview of mouse models and a detailed methodology to quantify lesions in the aortic root. Vascular Biology 6:e230017 doi: 10.1530/VB-23-0017 |
| [29] |
Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, et al. 2017. Recommendation on design, execution, and reporting of animal atherosclerosis studies: a scientific statement from the American heart association. Arteriosclerosis, Thrombosis, and Vascular Biology 37(9):e131−e157 doi: 10.1161/atv.0000000000000062 |
| [30] |
Zhang Y, Fatima M, Hou S, Bai L, Zhao S, et al. 2021. Research methods for animal models of atherosclerosis (Review). Molecular Medicine Reports 24:871 doi: 10.3892/mmr.2021.12511 |
| [31] |
Lee YT, Lin HY, Chan YWF, Li KHC, To OTL, et al. 2017. Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids in Health and Disease 16:12 doi: 10.1186/s12944-016-0402-5 |
| [32] |
Kotsovilis S, Salagianni M, Varela A, Davos CH, Galani IE, et al. 2024. Comprehensive analysis of 1-year-old female apolipoprotein E-deficient mice reveals advanced atherosclerosis with vulnerable plaque characteristics. International Journal of Molecular Sciences 25:1355 doi: 10.3390/ijms25021355 |
| [33] |
Getz GS, Reardon CA. 2016. ApoE knockout and knockin mice: the history of their contribution to the understanding of atherogenesis. Journal of Lipid Research 57:758−66 doi: 10.1194/jlr.R067249 |
| [34] |
Mulder M, Blokland A, van den Berg DJ, Schulten H, Bakker AHF, et al. 2001. Apolipoprotein E protects against neuropathology induced by a high-fat diet and maintains the integrity of the blood-brain barrier during aging. Laboratory Investigation 81:953−60 doi: 10.1038/labinvest.3780307 |
| [35] |
Ngai YF, Quong WL, Glier MB, Glavas MM, Babich SL, et al. 2010. Ldlr-/ - mice display decreased susceptibility to Western-type diet-induced obesity due to increased thermogenesis. Endocrinology 151:5226−36 doi: 10.1210/en.2010-0496 |
| [36] |
Henninger DD, Gerritsen ME, Granger DN. 1997. Low-density lipoprotein receptor knockout mice exhibit exaggerated microvascular responses to inflammatory stimuli. Circulation Research 81:274−81 doi: 10.1161/01.res.81.2.274 |
| [37] |
Bieghs V, Van Gorp PJ, Wouters K, Hendrikx T, Gijbels MJ, et al. 2012. LDL receptor knock-out mice are a physiological model particularly vulnerable to study the onset of inflammation in non-alcoholic fatty liver disease. PLoS One 7:e30668 doi: 10.1371/journal.pone.0030668 |
| [38] |
Chaix A, Lin T, Ramms B, Cutler RG, Le T, et al. 2024. Time-restricted feeding reduces atherosclerosis in LDLR KO mice but not in ApoE knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology 44:2069−87 doi: 10.1161/ATVBAHA.124.320998 |
| [39] |
Paalvast Y, Gerding A, Wang Y, Bloks VW, van Dijk TH, et al. 2017. Male apoE*3-Leiden. CETP mice on high-fat high-cholesterol diet exhibit a biphasic dyslipidemic response, mimicking the changes in plasma lipids observed through life in men. Physiological Reports 5:e13376 doi: 10.14814/phy2.13376 |
| [40] |
Groot PH, van Vlijmen BJ, Benson GM, Hofker MH, Schiffelers R, et al. 1996. Quantitative assessment of aortic atherosclerosis in APOE*3 Leiden transgenic mice and its relationship to serum cholesterol exposure. Arteriosclerosis, Thrombosis, and Vascular Biology 16:926−33 doi: 10.1161/01.atv.16.8.926 |
| [41] |
Lutgens E, Daemen M, Kockx M, Doevendans P, Hofker M, et al. 1999. Atherosclerosis in APOE*3-leiden transgenic mice: from proliferative to atheromatous stage. Circulation 99:276−83 doi: 10.1161/01.cir.99.2.276 |
| [42] |
Zhang J, Shi Q, Hu Y, Li X. 2022. Silibinin augments the effect of clopidogrel on atherosclerosis in diabetic ApoE deficiency mice. Clinical Hemorheology and Microcirculation 80:353−61 doi: 10.3233/CH-211279 |
| [43] |
Oppi S, Lüscher TF, Stein S. 2019. Mouse models for atherosclerosis research-which is my line? Frontiers in Cardiovascular Medicine 6:46 doi: 10.3389/fcvm.2019.00046 |
| [44] |
Galkina EV, Butcher M, Keller SR, Goff M, Bruce A, et al. 2012. Accelerated atherosclerosis in Apoe−/− mice heterozygous for the insulin receptor and the insulin receptor substrate-1. Arteriosclerosis, Thrombosis, and Vascular Biology 32:247−56 doi: 10.1161/ATVBAHA.111.240358 |
| [45] |
Kawashima Y, Chen J, Sun H, Lann D, Hajjar RJ, et al. 2009. Apolipoprotein E deficiency abrogates insulin resistance in a mouse model of type 2 diabetes mellitus. Diabetologia 52:1434−41 doi: 10.1007/s00125-009-1378-8 |
| [46] |
Zhang Y, Cheng Z, Hong L, Liu J, Ma X, et al. 2023. Apolipoprotein E (ApoE) orchestrates adipose tissue inflammation and metabolic disorders through NLRP3 inflammasome. Molecular Biomedicine 4:47 doi: 10.1186/s43556-023-00158-8 |
| [47] |
Hinder LM, Vincent AM, Hayes JM, McLean LL, Feldman EL. 2013. Apolipoprotein E knockout as the basis for mouse models of dyslipidemia-induced neuropathy. Experimental Neurology 239:102−10 doi: 10.1016/j.expneurol.2012.10.002 |
| [48] |
Zabalawi M, Bhat S, Loughlin T, Thomas MJ, Alexander E, et al. 2003. Induction of fatal inflammation in LDL receptor and ApoA-I double-knockout mice fed dietary fat and cholesterol. The American Journal of Pathology 163(3):1201−13 doi: 10.1016/S0002-9440(10)63480-3 |
| [49] |
Rensing KL, de Jager SCA, Stroes ES, Vos M, Twickler MTB, et al. 2014. Akt2/LDLr double knockout mice display impaired glucose tolerance and develop more complex atherosclerotic plaques than LDLr knockout mice. Cardiovascular Research 101:277−87 doi: 10.1093/cvr/cvt252 |
| [50] |
Golforoush P, Yellon DM, Davidson SM. 2020. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Research in Cardiology 115:73 doi: 10.1007/s00395-020-00829-5 |
| [51] |
Getz GS, Reardon CA. 2006. Diet and murine atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 26:242−49 doi: 10.1161/01.ATV.0000201071.49029.17 |
| [52] |
Funes AK, Avena V, Boarelli PV, Monclus MA, Zoppino DF, et al. 2024. Cholesterol dynamics in rabbit liver: high-fat diet, olive oil, and synergistic dietary effects. Biochemical and Biophysical Research Communications 733:150675 doi: 10.1016/j.bbrc.2024.150675 |
| [53] |
Li Y, Gan M, Tang T, Shao J, Lai T, et al. 2021. Intramuscular adipocyte and fatty acid differences between high-fat and control rabbit groups subject to a restricted diet. Veterinary Medicine and Science 7:2051−60 doi: 10.1002/vms3.576 |
| [54] |
Mäkitaipale J, Sievänen H, Sankari S, Laitinen-Vapaavuori O. 2019. Diet is a main source of vitamin D in Finnish pet rabbits (Oryctolagus cuniculus). Journal of Animal Physiology and Animal Nutrition 103:1564−70 doi: 10.1111/jpn.13120 |
| [55] |
Myers DL, Liaw L. 2004. Improved analysis of the vascular response to arterial ligation using a multivariate approach. The American Journal of Pathology 164:43−48 doi: 10.1016/S0002-9440(10)63094-5 |
| [56] |
Croatt AJ, Grande JP, Hernandez MC, Ackerman AW, Katusic ZS, et al. 2010. Characterization of a model of an arteriovenous fistula in the rat the effect of L-NAME. The American Journal of Pathology 176:2530−41 doi: 10.2353/ajpath.2010.090649 |
| [57] |
Bozzetto M, Rota S, Vigo V, Casucci F, Lomonte C, et al. 2017. Clinical use of computational modeling for surgical planning of arteriovenous fistula for hemodialysis. BMC Medical Informatics and Decision Making 17:26 doi: 10.1186/s12911-017-0420-x |
| [58] |
Li Y, Hu K, Li Y, Lu C, Guo Y, et al. 2024. The rodent models of arteriovenous fistula. Frontiers in Cardiovascular Medicine 11:1293568 doi: 10.3389/fcvm.2024.1293568 |
| [59] |
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, et al. 2020. Small rodent models of atherosclerosis. Biomedicine & Pharmacotherapy 129:110426 doi: 10.1016/j.biopha.2020.110426 |
| [60] |
Wu H, Gao T, Cao Y, Diao J, Chang F, et al. 2019. Protective and therapeutic effects of Trianthema portulacastrum against atherosclerosis in male albino rats via G-protein-coupled receptor 124. AMB Express 9:178 doi: 10.1186/s13568-019-0901-7 |
| [61] |
Lee JG, Ha CH, Yoon B, Cheong SA, Kim G, et al. 2019. Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Scientific Reports 9:2628 doi: 10.1038/s41598-019-38732-2 |
| [62] |
Spagnoli LG, Orlandi A, Mauriello A, Santeusanio G, de Angelis C, et al. 1991. Aging and atherosclerosis in the rabbit. 1. Distribution, prevalence and morphology of atherosclerotic lesions. Atherosclerosis 89:11−24 doi: 10.1016/0021-9150(91)90003-l |
| [63] |
Phinikaridou A, Hallock KJ, Qiao Y, Hamilton JA. 2009. A robust rabbit model of human atherosclerosis and atherothrombosis. Journal of Lipid Research 50:787−97 doi: 10.1194/jlr.M800460-JLR200 |
| [64] |
Wu Y, Li F, Wang Y, Hu T, Gao L. 2022. Lipid-lowering treatment in a rabbit model of atherosclerosis: a vessel wall magnetic resonance imaging study. Annals of Translational Medicine 10:569 doi: 10.21037/atm-22-1263 |
| [65] |
Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, et al. 2015. Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacology & Therapeutics 146:104−19 doi: 10.1016/j.pharmthera.2014.09.009 |
| [66] |
Hamamdzic D, Wilensky RL. 2013. Porcine models of accelerated coronary atherosclerosis: role of diabetes mellitus and hypercholesterolemia. Journal of Diabetes Research 2013:761415 doi: 10.1155/2013/761415 |
| [67] |
Kim M, Kim HB, Park DS, Cho KH, Hyun DY, et al. 2021. A model of atherosclerosis using nicotine with balloon overdilation in a porcine. Scientific Reports 11:13695 doi: 10.1038/s41598-021-93229-1 |
| [68] |
Hoogendoorn A, den Hoedt S, Hartman EMJ, Krabbendam-Peters I, Te Lintel Hekkert M, et al. 2019. Variation in coronary atherosclerosis severity related to a distinct LDL (low-density lipoprotein) profile: findings from a familial hypercholesterolemia pig model. Arteriosclerosis, Thrombosis, and Vascular Biology 39:2338−52 doi: 10.1161/ATVBAHA.119.313246 |
| [69] |
Getz GS, Reardon CA. 2012. Animal models of atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 32(5):1104−15 doi: 10.1161/ATVBAHA.111.237693 |
| [70] |
Cox LA, Olivier M, Spradling-Reeves K, Karere GM, Comuzzie AG, et al. 2017. Nonhuman Primates and translational research-cardiovascular disease. ILAR Journal 58:235−50 doi: 10.1093/ilar/ilx025 |
| [71] |
Angom RS, Nakka NMR. 2024. Zebrafish as a model for cardiovascular and metabolic disease: the future of precision medicine. Biomedicines 12:693 doi: 10.3390/biomedicines12030693 |
| [72] |
Tang D, Geng F, Yu C, Zhang R. 2021. Recent application of zebrafish models in atherosclerosis research. Frontiers in Cell and Developmental Biology 9:643697 doi: 10.3389/fcell.2021.643697 |
| [73] |
Ouimet M, Franklin V, Mak E, Liao X, Tabas I, et al. 2011. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metabolism 13:655−67 doi: 10.1016/j.cmet.2011.03.023 |
| [74] |
Gui Y, Zheng H, Cao RY. 2022. Foam cells in atherosclerosis: novel insights into its origins, consequences, and molecular mechanisms. Frontiers in Cardiovascular Medicine 9:845942 doi: 10.3389/fcvm.2022.845942 |
| [75] |
Onodera A, Shimomura T, Ochi H, Sunada R, Fukutomi E, et al. 2023. The cellular accumulation of vehicle exhaust particulates changes the acidic pH environment of lysosomes in BEAS-2B airway epithelial cells. Journal of Xenobiotics 13:653−61 doi: 10.3390/jox13040042 |
| [76] |
Xing Y, Lin X. 2024. Challenges and advances in the management of inflammation in atherosclerosis. Journal of Advanced Research doi: 10.1016/j.jare.2024.06.016 |
| [77] |
Ait-Oufella H, Libby P. 2024. Inflammation and atherosclerosis: prospects for clinical trials. Arteriosclerosis, Thrombosis, and Vascular Biology 44:1899−905 doi: 10.1161/ATVBAHA.124.320155 |
| [78] |
Yousaf H, Khan MIU, Ali I, Munir MU, Lee KY. 2023. Emerging role of macrophages in non-infectious diseases: an update. Biomedicine & Pharmacotherapy 161:114426 doi: 10.1016/j.biopha.2023.114426 |
| [79] |
Pepin ME, Gupta RM. 2024. The role of endothelial cells in atherosclerosis: insights from genetic association studies. The American Journal of Pathology 194:499−509 doi: 10.1016/j.ajpath.2023.09.012 |
| [80] |
Xu J, Kitada M, Ogura Y, Koya D. 2021. Relationship between autophagy and metabolic syndrome characteristics in the pathogenesis of atherosclerosis. Frontiers in Cell and Developmental Biology 9:641852 doi: 10.3389/fcell.2021.641852 |
| [81] |
Pan W, Zhang J, Zhang L, Zhang Y, Song Y, et al. 2024. Comprehensive view of macrophage autophagy and its application in cardiovascular diseases. Cell Proliferation 57:e13525 doi: 10.1111/cpr.13525 |
| [82] |
Das R, Ganapathy S, Mahabeleshwar GH, Drumm C, Febbraio M, et al. 2013. Macrophage gene expression and foam cell formation are regulated by plasminogen. Circulation 127:1209−18 doi: 10.1161/CIRCULATIONAHA.112.001214 |
| [83] |
Sijbesma JWA, van Waarde A, Kristensen S, Kion I, Tietge UJF, et al. 2023. Characterization of a novel model for atherosclerosis imaging: the apolipoprotein E-deficient rat. EJNMMI Research 13:106 doi: 10.1186/s13550-023-01055-5 |
| [84] |
Zhang H, Wu LM, Wu J. 2011. Cross-talk between apolipoprotein E and cytokines. Mediators of Inflammation 2011:949072 doi: 10.1155/2011/949072 |
| [85] |
Cai Y, Wen J, Ma S, Mai Z, Zhan Q, et al. 2021. Huang-Lian-Jie-du decoction attenuates atherosclerosis and increases plaque stability in high-fat diet-induced ApoE−/− mice by inhibiting M1 macrophage polarization and promoting M2 macrophage polarization. Frontiers in Physiology 12:666449 doi: 10.3389/fphys.2021.666449 |
| [86] |
He L, Chen Q, Wang L, Pu Y, Huang J, et al. 2024. Activation of Nrf2 inhibits atherosclerosis in ApoE−/− mice through suppressing endothelial cell inflammation and lipid peroxidation. Redox Biology 74:103229 doi: 10.1016/j.redox.2024.103229 |
| [87] |
Mangarova DB, Reimann C, Kaufmann JO, Möckel J, Kader A, et al. 2024. Elastin-specific MR probe for visualization and evaluation of an interleukin-1β targeted therapy for atherosclerosis. Scientific Reports 14:20648 doi: 10.1038/s41598-024-71716-5 |
| [88] |
Grebe A, Hoss F, Latz E. 2018. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circulation Research 122:1722−40 doi: 10.1161/CIRCRESAHA.118.311362 |
| [89] |
Go GW, Mani A. 2012. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. The Yale Journal of Biology and Medicine 85:19−28 |
| [90] |
Rodger EJ, Porteous CM, Jones GT, Legge M, Kleffmann T, et al. 2018. Proteomic analysis of liver from human lipoprotein(a) transgenic mice shows an oxidative stress and lipid export response. BioMed Research International 2018:4963942 doi: 10.1155/2018/4963942 |
| [91] |
Wu Y, Song M, Chen W, Xu K, Wu M, et al. 2023. Liraglutide ameliorates oxidized LDL-induced endothelial dysfunction by GLP-1R-dependent downregulation of LOX-1-mediated oxidative stress and inflammation. Redox Report 28:2218684 doi: 10.1080/13510002.2023.2218684 |
| [92] |
Wang X, Zhu L, Liu J, Ma Y, Qiu C, et al. 2024. Palmitic acid in type 2 diabetes mellitus promotes atherosclerotic plaque vulnerability via macrophage Dll4 signaling. Nature Communications 15:1281 doi: 10.1038/s41467-024-45582-8 |
| [93] |
Bao X, Liang Y, Chang H, Cai T, Feng B, et al. 2024. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduction and Targeted Therapy 9:13 doi: 10.1038/s41392-023-01690-3 |
| [94] |
Shin D, Kim S, Lee H, Lee HC, Lee J, et al. 2024. PCSK9 stimulates Syk, PKCδ, and NF-κB, leading to atherosclerosis progression independently of LDL receptor. Nature Communications 15:2789 doi: 10.1038/s41467-024-46336-2 |
| [95] |
Al-Mashhadi RH, Sørensen CB, Kragh PM, Christoffersen C, Mortensen MB, et al. 2013. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Science Translational Medicine 5:166ra1 doi: 10.1126/scitranslmed.3004853 |
| [96] |
Yuan F, Guo L, Park KH, Woollard JR, Taek-Geun K, et al. 2018. Ossabaw pigs with a PCSK9 gain-of-function mutation develop accelerated coronary atherosclerotic lesions: a novel model for preclinical studies. Journal of the American Heart Association 7:e006207 doi: 10.1161/JAHA.117.006207 |
| [97] |
Agarwala A, Billheimer J, Rader DJ. 2013. Mighty minipig in fight against cardiovascular disease. Science Translational Medicine 5:166fs1 doi: 10.1126/scitranslmed.3005369 |
| [98] |
Shim J, Al-Mashhadi R, Sørensen C, Bentzon J. 2016. Large animal models of atherosclerosis–new tools for persistent problems in cardiovascular medicine. The Journal of Pathology 238:257−66 doi: 10.1002/path.4646 |
| [99] |
Sergin I, Evans TD, Zhang X, Bhattacharya S, Stokes CJ, et al. 2017. Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nature Communications 8:15750 doi: 10.1038/ncomms15750 |