| [1] |
Ahmadi FI, Karimi K, Struik PC. 2018. Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. South African Journal of Botany 115:5−11 doi: 10.1016/j.sajb.2017.11.018 |
| [2] |
Qiao Y, Jiang W, Lee JH, Park BS, Choi MS, et al. 2010. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytologist 185:258−74 doi: 10.1111/j.1469-8137.2009.03047.x |
| [3] |
Cheeseman JM. 2015. The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytologist 206:557−70 doi: 10.1111/nph.13217 |
| [4] |
Brown ME, Funk CC. 2008. Food security under climate change. Science 319:580−81 doi: 10.1126/science.1154102 |
| [5] |
Schmidhuber J, Tubiello FN. 2007. Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America 104:19703−08 doi: 10.1073/pnas.0701976104 |
| [6] |
Stocking MA. 2003. Tropical soils and food security: the next 50 years. Science 302:1356−59 doi: 10.1126/science.1088579 |
| [7] |
Fan L, Niu Z, Shi G, Song Z, Yang Q, et al. 2024. WRKY22 transcription factor from Iris laevigata regulates flowering time and resistance to salt and drought. Plants 13:1191 doi: 10.3390/plants13091191 |
| [8] |
Luo Y, Wang K, Zhu L, Zhang N, Si H. 2024. StMAPKK5 positively regulates response to drought and salt stress in potato. International Journal of Molecular Sciences 25:3662 doi: 10.3390/ijms25073662 |
| [9] |
Yuan H, Cheng M, Wang R, Wang Z, Fan F, et al. 2024. miR396b/GRF6 module contributes to salt tolerance in rice. Plant Biotechnology Journal 22:2079−92 doi: 10.1111/pbi.14326 |
| [10] |
Rajappa S, Krishnamurthy P, Huang H, Yu D, Friml J, et al. 2024. The translocation of a chloride channel from the Golgi to the plasma membrane helps plants adapt to salt stress. Nature Communications 15:3978 doi: 10.1038/s41467-024-48234-z |
| [11] |
Shoukat A, Saqib ZA, Akhtar J, Aslam Z, Pitann B, et al. 2024. Zinc and Silicon nano-fertilizers influence ionomic and metabolite profiles in maize to overcome salt stress. Plants 13:1224 doi: 10.3390/plants13091224 |
| [12] |
Muhammad I, Shalmani A, Ali M, Yang QH, Ahmad H, et al. 2020. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science 11:615942 doi: 10.3389/fpls.2020.615942 |
| [13] |
Dutta S, Mohanty S, Tripathy BC. 2009. Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiology 150:1050−61 doi: 10.1104/pp.109.137265 |
| [14] |
Gururani MA, Venkatesh J, Tran LS. 2015. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant 8:1304−20 doi: 10.1016/j.molp.2015.05.005 |
| [15] |
Simkin AJ, López-Calcagno PE, Raines CA. 2019. Feeding the world: improving photosynthetic efficiency for sustainable crop production. Journal of Experimental Botany 70:1119−40 doi: 10.1093/jxb/ery445 |
| [16] |
Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, et al. 2020. Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation 39:509−31 doi: 10.1007/s00344-019-10018-x |
| [17] |
Robson MJ. 1973. The growth and development of simulated swards of perennial ryegrass: II. Carbon assimilation and respiration in a seedling sward. Annals of Botany 37:501−18 doi: 10.1093/oxfordjournals.aob.a084717 |
| [18] |
Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, et al. 2013. Rubisco activity and regulation as targets for crop improvement. Journal of Experimental Botany 64:717−30 doi: 10.1093/jxb/ers336 |
| [19] |
Sharwood RE. 2017. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. New Phytologist 213:494−510 doi: 10.1111/nph.14351 |
| [20] |
Long SP, Marshall-Colon A, Zhu XG. 2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56−66 doi: 10.1016/j.cell.2015.03.019 |
| [21] |
Winter K, Sage RF, Edwards EJ, Virgo A, Holtum JAM. 2019. Facultative crassulacean acid metabolism in a C3–C4 intermediate. Journal of Experimental Botany 70:6571−79 doi: 10.1093/jxb/erz085 |
| [22] |
Yamori W, Hikosaka K, Way DA. 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research 119:101−17 doi: 10.1007/s11120-013-9874-6 |
| [23] |
Yan X, Chang Y, Zhao W, Qian C, Yin X, et al. 2022. Transcriptome profiling reveals that foliar water uptake occurs with C3 and crassulacean acid metabolism facultative photosynthesis in Tamarix ramosissima under extreme drought. AoB Plants 14:plab060 doi: 10.1093/aobpla/plab060 |
| [24] |
Gautam H, Fatma M, Sehar Z, Iqbal N, Albaqami M, et al. 2022. Exogenously-sourced ethylene positively modulates photosynthesis, carbohydrate metabolism, and antioxidant defense to enhance heat tolerance in rice. International Journal of Molecular Sciences 23:1031 doi: 10.3390/ijms23031031 |
| [25] |
Zhang J, Li L, Zhang Z, Han L, Xu L. 2024. The effect of ethephon on ethylene and chlorophyll in Zoysia japonica leaves. International Journal of Molecular Sciences 25:1663 doi: 10.3390/ijms25031663 |
| [26] |
Sehar Z, Iqbal N, Khan MIR, Masood A, Rehman MT, et al. 2021. Ethylene reduces glucose sensitivity and reverses photosynthetic repression through optimization of glutathione production in salt-stressed wheat (Triticum aestivum L.). Scientific Reports 11:12650 doi: 10.1038/s41598-021-92086-2 |
| [27] |
Upadhyay RK, Soni DK, Singh R, Dwivedi UN, Pathre UV, et al. 2013. SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth. Journal of Experimental Botany 64:3237−47 doi: 10.1093/jxb/ert162 |
| [28] |
Masood A, Khan S, Mir IR, Anjum NA, Rasheed F, et al. 2024. Ethylene is crucial in abscisic acid-mediated modulation of seed vigor, growth, and photosynthesis of salt-treated mustard. Plants 13:2307 doi: 10.3390/plants13162307 |
| [29] |
Zhang ML, Temirbayeva K, Sanderson SC, Chen X. 2015. Young dispersal of xerophil Nitraria lineages in intercontinental disjunctions of the Old World. Scientific Reports 5:13840 doi: 10.1038/srep13840 |
| [30] |
Ni J, Wu X, Zhang H, Liu T, Zhang L. 2012. Comparative analysis of salt tolerance of three Nitraria species. Forest Research 25:48−53 doi: 10.3969/j.issn.1001-1498.2012.01.009 |
| [31] |
Zhu L, Fang H, Lian Z, Zhang J, Li X, et al. 2022. Genome-wide investigation and expression analysis of the Nitraria sibirica Pall. CIPK gene family. International Journal of Molecular Sciences 23:11599 doi: 10.3390/ijms231911599 |
| [32] |
Bao X, Zong Y, Hu N, Li S, Liu B, et al. 2022. Functional R2R3-MYB transcription factor NsMYB1, regulating anthocyanin biosynthesis, was relative to the fruit color differentiation in Nitraria sibirica Pall. BMC Plant Biology 22:186 doi: 10.1186/s12870-022-03561-5 |
| [33] |
Lu L, Li X, Hao Z, Yang L, Zhang J, et al. 2018. Phylogenetic studies and comparative chloroplast genome analyses elucidate the basal position of halophyte Nitraria sibirica (Nitrariaceae) in the Sapindales. Mitochondrial DNA Part A 29:745−55 doi: 10.1080/24701394.2017.1350954 |
| [34] |
Geng X, Chen S, Yilan E, Zhang W, Mao H, et al. 2020. Overexpression of a tonoplast Na+/H+ antiporter from the halophytic shrub Nitraria sibirica improved salt tolerance and root development in transgenic poplar. Tree Genetics & Genomes 16:81 doi: 10.1007/s11295-020-01475-7 |
| [35] |
Tang X, Zhang H, Shabala S, Li H, Yang X, et al. 2020. Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species Nitraria sibirica Pall. Tree Physiology 41:1264−77 doi: 10.1093/treephys/tpaa174 |
| [36] |
Tang X, Yang X, Li H, Zhang H. 2018. Maintenance of K+/Na+ balance in the roots of Nitraria sibirica Pall. in response to NaCl stress. Forests 9:601 doi: 10.3390/f9100601 |
| [37] |
Basso L, Yamori W, Szabo I, Shikanai T. 2020. Collaboration between NDH and KEA3 allows maximally efficient photosynthesis after a long dark adaptation. Plant Physiology 184:2078−90 doi: 10.1104/pp.20.01069 |
| [38] |
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8:1494−512 doi: 10.1038/nprot.2013.084 |
| [39] |
Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology 11:R106 doi: 10.1186/gb-2010-11-10-r106 |
| [40] |
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28:511−15 doi: 10.1038/nbt.1621 |
| [41] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27 doi: 10.1093/nar/30.1.325 |
| [42] |
Berzina I, Kalnins M, Geiba Z, Raita S, Palcevska J, et al. 2024. Creating single-cell protein-producing Bacillus subtilis mutants using chemical mutagen and amino acid inhibitors. Scientifica 2024:8968295 doi: 10.1155/sci5/8968295 |
| [43] |
Wu X, Zhu J, Zhu L, Tang Y, Hao Z, et al. 2023. Genome-wide analyses of calmodulin and calmodulin-like proteins in the halophyte Nitraria sibirica reveal their involvement in response to salinity, drought and cold stress. International Journal of Biological Macromolecules 253:127442 doi: 10.1016/j.ijbiomac.2023.127442 |
| [44] |
Naranjo B, Mignée C, Krieger-Liszkay A, Hornero-Méndez D, Gallardo-Guerrero L, et al. 2016. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Plant, Cell & Environment 39:804−22 doi: 10.1111/pce.12652 |
| [45] |
Li H, Tang X, Yang X, Zhang H. 2021. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress. Scientific Reports 11:12878 doi: 10.1038/s41598-021-92317-6 |
| [46] |
Laetsch W. 1969. Relationship between chloroplast structure and photosynthetic carbon-fixation pathways. Science Progress (1933-): 323-51 |
| [47] |
Gan P, Liu F, Li R, Wang S, Luo J. 2019. Chloroplasts—beyond energy capture and carbon fixation: tuning of photosynthesis in response to chilling stress. International Journal of Molecular Sciences 20:5046 doi: 10.3390/ijms20205046 |
| [48] |
Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444:139−58 doi: 10.1016/j.abb.2005.10.018 |
| [49] |
Guo Y, Huang Y, Gao J, Pu Y, Wang N, et al. 2018. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. Biotechnology for Biofuels 11:124 doi: 10.1186/s13068-018-1122-z |
| [50] |
Zhou J, Wang J, Bi Y, Wang L, Tang L, et al. 2014. Overexpression of PtSOS2 enhances salt tolerance in transgenic poplars. Plant Molecular Biology Reporter 32:185−97 doi: 10.1007/s11105-013-0640-x |
| [51] |
Zulfiqar F, Nafees M, Chen J, Darras A, Ferrante A, et al. 2022. Chemical priming enhances plant tolerance to salt stress. Frontiers in Plant Science 13:946922 doi: 10.3389/fpls.2022.946922 |
| [52] |
Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytologist 179:945−63 doi: 10.1111/j.1469-8137.2008.02531.x |
| [53] |
İbrahimova U, Kumari P, Yadav S, Rastogi A, Antala M, et al. 2021. Progress in understanding salt stress response in plants using biotechnological tools. Journal of Biotechnology 329:180−91 doi: 10.1016/j.jbiotec.2021.02.007 |
| [54] |
Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, et al. 2014. Dynamic photosynthesis in different environmental conditions. Journal of Experimental Botany 66:2415−26 doi: 10.1093/jxb/eru406 |
| [55] |
Fernández-García N, Olmos E, Bardisi E, García-De la Garma J, López-Berenguer C, et al. 2014. Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). Journal of Plant Physiology 171:64−75 doi: 10.1016/j.jplph.2013.11.004 |
| [56] |
Min X, Zang Y, Sun W, Ma J. 2019. Contrasting water sources and water-use efficiency in coexisting desert plants in two saline-sodic soils in northwest China. Plant Biology 21:1150−58 doi: 10.1111/plb.13028 |
| [57] |
Scheffen M, Marchal DG, Beneyton T, Schuller SK, Klose M, et al. 2021. A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nature Catalysis 4:105−15 doi: 10.1038/s41929-020-00557-y |
| [58] |
Svensson P, Bläsing OE, Westhoff P. 2003. Evolution of C4 phosphoenolpyruvate carboxylase. Archives of Biochemistry and Biophysics 414:180−88 doi: 10.1016/S0003-9861(03)00165-6 |