| [1] |
Narzary H, Islary A, Basumatary S. 2017. Phytochemicals and antioxidant properties of eleven wild edible plants from Assam, India. Mediterranean Journal of Nutrition and Metabolism 9(3):191−201 doi: 10.3233/MNM-16116 |
| [2] |
Chipurura B, Muchuweti M, Kasiyamhuru A. 2013. Wild leafy vegetables consumed in Buhera district of Zimbabwe and their phenolic compounds content. Ecology of Food and Nutrition 52(2):178−89 doi: 10.1080/03670244.2012.706094 |
| [3] |
Ziyatdinova G, Kalmykova A. 2023. Electrochemical characterization of the antioxidant properties of medicinal plants and products: a review. Molecules 28(5):2308 doi: 10.3390/molecules28052308 |
| [4] |
Niaz K, Shah MA, Khan F, Saleem U, Vargas C, et al. 2020. Bioavailability and safety of phytonutrients. In Phytonutrients in Food. eds Nabavi SM, Suntar I, Barreca D, Khan H. UK: Woodhead Publishing. pp. 117–36. doi: 10.1016/B978-0-12-815354-3.00003-4 |
| [5] |
Mucha P, Skoczyńska A, Małecka M, Hikisz P, Budzisz E. 2021. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 26(16):4886 doi: 10.3390/molecules26164886 |
| [6] |
Khamzina EI, Stozhko NYu. 2021. Antioxidant activity of plants as an indicator of environmental health. Proc. Environmental safety in the technosphere: materials of the Fourth International Scientific and Practical Conference of Teachers, Young Scientists and Students, Ekaterinburg, 2021, Ekaterinburg. pp. 190−93 |
| [7] |
Zagoskina NV, Nazarenko LV. 2016. Active Oxygen Species and Antioxidant System of Plants. Vestnik Moskovskogo universiteta. Seriya 10. Zhurnalistika 2(22):9−23 |
| [8] |
Kerchev PI, Van Breusegem F. 2022. Improving oxidative stress resilience in plants. The Plant Journal 109(2):359−72 doi: 10.1111/tpj.15493 |
| [9] |
Borisova GG, Maleva MG, Nekrasova GF, Chukina NV. 2012. Methods for assessing the antioxidantstatus of plants. educational manual. Ed. Chukina NV. Ekaterinburg: Ural Publishing House. 72 pp. https://elar.urfu.ru/bitstream/10995/45617/1/978-5-7996-0738-8_2012.pdf?ysclid=m4groppitw998178151 |
| [10] |
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, et al. 2020. Important flavonoids and their role as a therapeutic agent. Molecules 25(22):5243 doi: 10.3390/molecules25225243 |
| [11] |
Liu J, Zhou H, Song L, Yang Z, Qiu M, et al. 2021. Anthocyanins: promising natural products with diverse pharmacological activities. Molecules 26(13):3807 doi: 10.3390/molecules26133807 |
| [12] |
Zihad SMNK, Gupt Y, Uddin SJ, Islam MT, Alam MR, et al. 2019. Nutritional value, micronutrient and antioxidant capacity of some green leafy vegetables commonly used by southern coastal people of Bangladesh. Heliyon 5:e02768 doi: 10.1016/j.heliyon.2019.e02768 |
| [13] |
Ejoh SI, Wireko-Manu FD, Page D, Renard CMGC. 2021. Traditional green leafy vegetables as underutilised sources of micronutrients in a rural farming community in south-west Nigeria I: estimation of vitamin C, carotenoids and mineral contents. South African Journal of Clinical Nutrition 34:40−45 doi: 10.1080/16070658.2019.1652963 |
| [14] |
Oboh G. 2005. Effect of blanching on the antioxidant properties of some tropical green leafy vegetables. LWT - Food Science and Technology 38:513−17 doi: 10.1016/j.lwt.2004.07.007 |
| [15] |
Subhasree B, Baskar R, Laxmi Keerthana R, Lijina Susan R, Rajasekaran P. 2009. Evaluation of antioxidant potential in selected green leafy vegetables. Food Chemistry 115:1213−20 doi: 10.1016/j.foodchem.2009.01.029 |
| [16] |
Hano C, Tungmunnithum D. 2020. Plant polyphenols, more than just simple natural antioxidants: oxidative stress, aging and age-related diseases. Medicines 7:26 doi: 10.3390/medicines7050026 |
| [17] |
Sarkar P, Abedin MM, Singh SP, Pandey A, Rai AK. 2022. Microbial production and transformation of polyphenols. In Current Developments in Biotechnology and Bioengineering, eds Rai AK, Singh SP, Pandey A, Larroche C, Sacool CR. Holland: Elsevier pp. 189–208. doi: 10.1016/B978-0-12-823506-5.00005-9 |
| [18] |
Do Carmo MAV, Granato D, Azevedo L. 2021. Antioxidant/pro-oxidant and antiproliferative activities of phenolic-rich foods and extracts: a cell-based point of view. Advances in Food and Nutrition Research 98:253−80 doi: 10.1016/bs.afnr.2021.02.010 |
| [19] |
Sharma S, Padhi S, Kumari M, Patnaik S, Sahoo D. 2022. Antioxidant potential of selected wild edible leafy vegetables of sikkim himalayan region: effects of cooking methods and gastrointestinal digestion on activity. Frontiers in Nutrition 9:861347 doi: 10.3389/fnut.2022.861347 |
| [20] |
Possenti M, Baima S, Raffo A, Durazzo A, Giusti AM, et al. 2016. Glucosinolates in food. In Glucosinolates, Mérillon JM, Ramawat K. Cham: Springer. pp. 1–46. doi: 10.1007/978-3-319-26479-0_4-1 |
| [21] |
Jia CZ, Wang JJ, Chen DL, Hu XW. 2022. Seed germination and seed bank dynamics of Eruca sativa (Brassicaceae): a weed on the northeastern edge of Tibetan Plateau. Frontiers in Plant Science 13:820925 doi: 10.3389/fpls.2022.820925 |
| [22] |
Bell L, Wagstaff C. 2014. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). Journal of Agriculture and Food Chemistry 62:4481−92 doi: 10.1021/jf501096x |
| [23] |
Yang T, Samarakoon U, Altland J, Ling P. 2021. Photosynthesis, biomass production, nutritional quality, and flavor-related phytochemical properties of hydroponic-grown Arugula (Eruca sativa Mill.) 'Standard' under different electrical conductivities of nutrient solution. Agronomy 11:1340 doi: 10.3390/agronomy11071340 |
| [24] |
Pagnotta E, Ugolini L, Matteo R, Righetti L. 2022. Bioactive compounds from Eruca sativa seeds. Encyclopedia 2:1866−79 doi: 10.3390/encyclopedia2040129 |
| [25] |
Ermakov AI, Arasimovich VV. 1961. Biochemistry of vegetable crops. Мoscow, Russia: Agropromizdat. 544 pp. |
| [26] |
Maslennikov P, Chupakhina, G. 2004. Methods of vitamin analysis: Workshop. Kaliningrad: KSU Publishing House. 36 pp. |
| [27] |
Singleton VL , Rossi JA Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16:144−58 doi: 10.5344/ajev.1965.16.3.144 |
| [28] |
Settharaksa S, Jongjareonrak A, Hmadhlu P, Chansuwan W, Siripongvutikorn S. 2012. Flavonoid, phenolic contents and antioxidant properties of Thai hot curry paste extract and its ingredients as affected of pH, solvent types and high temperature. International Food Research Journal 19(4):1581−87 |
| [29] |
Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28:25−30 doi: 10.1016/S0023-6438(95)80008-5 |
| [30] |
Afshar FH, Delazar A, Nazemiyeh H, Esnaashari S, Moghadam SB. 2012. Comparison of the total phenol, flavonoid contentsand antioxidant activity of methanolic of Artemisia spicigera and A. splendens growing in Iran. Pharmaceutical Seinces 18(3):165−70 |
| [31] |
Phillips KM, Tarrago-Trani MT, McGinty RC, Rasor AS, Haytowitz DB, et al. 2018. Seasonal variability of the vitamin C content of fresh fruits and vegetables in a local retail market. Journal of the Science of Food and Agriculture 98:4191−204 doi: 10.1002/jsfa.8941 |
| [32] |
Stahl W, Sies H. 2003. Antioxidant activity of carotenoids. Molecular Aspects of Medicine 24(6):345−51 doi: 10.1016/s0098-2997(03)00030-x |
| [33] |
Mohankumar JB, Uthira L, Maheswari SU. 2018. Total phenolic content of organic and conventional green leafy vegetables. Journal of Nutrition and Human Health 2(1):1−6 doi: 10.35841/nutrition-human-health.2.1.1-6 |
| [34] |
Amarowicz R, Carle R, Dongowski G, Durazzo A, Galensa R, et al. 2009. Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Molecular Nutrition & Food Research 53(S2):S151−S183 doi: 10.1002/mnfr.200700486 |
| [35] |
Vaitsiakhovich MA, Kuchinskaya VA, Navaselsky IYu, Hryvu-sevich PV, Samokhina VV, et al. 2018. L-Asсorbic acid as an important antioxidant and signal-regulatory agent in the cells of higher plants. Journal of the Belarusian State University. Biology 2:27−38 |
| [36] |
Zhang Y. 2013. Biological role of ascorbate in plants. In Ascorbic Acid in Plants. New York: Springer. pp. 7–33. doi: 10.1007/978-1-4614-4127-4_2 |
| [37] |
Žnidarčič D, Ban D, Šircelj H. 2011. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chemistry 129(3):1164−68 doi: 10.1016/j.foodchem.2011.05.097 |
| [38] |
Salvatore S, Pellegrini N, Brenna OV, Del Rio D, Frasca G, et al. 2005. Antioxidant characterization of some Sicilian edible wild greens. Journal of Agricultural and Food Chemistry 53(24):9465−71 doi: 10.1021/jf051806r |
| [39] |
Durazzo A, Azzini E, Lazzè MC, Raguzzini A, Pizzala R, et al. 2013. Italian wild rocket [Diplotaxis tenuifolia (L.) DC.]: influence of agricultural practices on antioxidant molecules and on cytotoxicity and antiproliferative effects. Agriculture 3:285−98 doi: 10.3390/agriculture3020285 |
| [40] |
Guijarro-Real C, Rodríguez-Burruezo A, Prohens J, Adalid-Martínez A, Fita A. 2017. Influence of the growing conditions in the content of vitamin C in Diplotaxis erucoides. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture 74(2):144−46 doi: 10.15835/buasvmcn-hort:0011 |
| [41] |
Guijarro-Real C, Adalid-Martínez AM, Aguirre K, Prohens J, Rodríguez-Burruezo A, et al. 2019. Growing Conditions affect the phytochemical composition of edible wall rocket (Diplotaxis erucoides). Agronomy 9(12):858 doi: 10.3390/agronomy9120858 |
| [42] |
Martínez-Sánchez A, Gil-Izquierdo A, Gil MI, Ferreres F. 2008. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. Journal of Agricultural and Food Chemistry 56(7):2330−40 doi: 10.1021/jf072975+ |
| [43] |
Kurbakov EL, Molchanova AV. 2011. Some biochemical indicators of leaves of salad crops. Proc. International Scientific-Practical Conference, 2011. Saratov: KUBiK Publishing House. pp. 247−49 |
| [44] |
Spadafora ND, Amaro AL, Pereira MJ, Müller CT, Pintado M, et al. 2016. Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry 211:114−23 doi: 10.1016/j.foodchem.2016.04.107 |
| [45] |
Andrianova YuE, Tarchevsky IA. 2000. Chlorophyll and plant productivity. Moscow: Nauka. |
| [46] |
Cherkashina MV, Petukhova GA. 2007. The influence of anthropogenic load on changes in the content of photosynthesis pigments and the degree of color of woody and herbaceous plants. Modern High Technology 5:81−82 |
| [47] |
Pérez-Gálvez A, Viera I, Roca M. 2020. Carotenoids and Chlorophylls as Antioxidants. Antioxidants 9:505 doi: 10.3390/antiox9060505 |
| [48] |
Lanfer-Marquez UM, Barros RMC, Sinnecker P. 2005. Antioxidant activity of chlorophylls and their derivatives. Food Research International 38:885−91 doi: 10.1016/j.foodres.2005.02.012 |
| [49] |
Hsu CY, Yang CM, Chen CM, Chao PY, et al. 2005. Effects of chlorophyll-related compounds on hydrogen peroxide induced DNA damage within human lymphocytes. Journal of Agricultural and Food Chemistry 6:2746−50 doi: 10.1021/jf048520r |
| [50] |
Fernandes AS, Nogara GP, Menezes CR, Cichoski AJ, Mercadante AZ, et al. 2017. Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction. Food Research International 99:1036−41 doi: 10.1016/j.foodres.2016.11.011 |
| [51] |
Pavlov IN. 2005. Woody plants under conditions of technogenic pollution. Ulan-Ude: Publishing house of the Buryat scientific. |
| [52] |
Wagstaff C. 2014. Analysis of growth physiology and phytochemical content of Eruca and Diplotaxis Cultivars under different light and temperature regimes. Acta Horticulturae 1040:361−74 |
| [53] |
Galmes J, Abadi A, Cifrea J, Medranoa H, Flexas J. 2007. Photoprotection processes under water stress and recovery in Mediterranean plants with different growth forms and leaf habits. Physiologia Plantarum 130:495−510 doi: 10.1111/j.1399-3054.2007.00919.x |
| [54] |
Disciglio G, Tarantino A, Frabboni L, Gagliardi A, Giuliani MM, et al. 2017. Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy 12(4):1036 doi: 10.4081/ija.2017.1036 |
| [55] |
Heimler D, Isolani L, Vignolini P, Tombelli S, Romani A. 2007. Polyphenol content and antioxidative activity in some species of freshly consumed salads. Journal of Agricultural and Food Chemistry 55(5):1724−29 doi: 10.1021/jf0628983 |
| [56] |
Pasini F, Verardo V, Caboni MF, D'Antuono LF. 2012. Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chemistry 133:1025−33 doi: 10.1016/j.foodchem.2012.01.021 |
| [57] |
Martínez-Sánchez A, Llorach R, Gil MI, Ferreres F. 2007. Identification of new flavonoid glycosides and flavonoid profiles to characterize rocket leafy salads (Eruca Vesicaria and Diplotaxis tenuifolia). Journal of Agricultural and Food Chemistry 55(4):1356−63 doi: 10.1021/jf063474b |
| [58] |
Lomboeva SS, Tankhaeva LM, Olennikov DN. 2008. Dynamics of flavonoid accumulation in the aerial part of Orthilia secunda (L.) House. Chemistry of Plant Materials 3:83−88 |