[1]

Larsson E, Sitbon F, Ljung K, Von Arnold S. 2008. Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytologist 177:356−66

doi: 10.1111/j.1469-8137.2007.02289.x
[2]

Nemhauser JL, Chory J. 2004. BRing it on: new insights into the mechanism of brassinosteroid action. Journal of Experimental Botany 55:265−70

doi: 10.1093/jxb/erh024
[3]

Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, et al. 2019. Brassinosteroid signaling in plant development and adaptation to stress. Development 146:dev151894

doi: 10.1242/dev.151894
[4]

Zhao B, Li J. 2012. Regulation of brassinosteroid biosynthesis and inactivation. Journal of Integrative Plant Biology 54:746−59

doi: 10.1111/j.1744-7909.2012.01168.x
[5]

Kozaki A, Aoyanagi T. 2022. Molecular aspects of seed development controlled by gibberellins and abscisic acids. International Journal of Molecular Sciences 23:1876

doi: 10.3390/ijms23031876
[6]

Nomura T, Ueno M, Yamada Y, Takatsuto S, Takeuchi Y, et al. 2007. Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiology 143:1680−88

doi: 10.1104/pp.106.093096
[7]

Xin P, Yan J, Fan J, Chu J, Yan C. 2013. An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. Plant Physiology 162:2056−66

doi: 10.1104/pp.113.221952
[8]

Yokota T, Ohnishi T, Shibata K, Asahina M, Nomura T, et al. 2017. Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. Phytochemistry 136:46−55

doi: 10.1016/j.phytochem.2016.12.020
[9]

Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, et al. 2005. The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. Journal of Biological Chemistry 280:17873−79

doi: 10.1074/jbc.M414592200
[10]

Kim TW, Chang SC, Lee JS, Takatsuto S, Yokota T, et al. 2004. Novel biosynthetic pathway of castasterone from cholesterol in tomato. Plant Physiology 135:1231−42

doi: 10.1104/pp.104.043588
[11]

Kim BK, Fujioka S, Takatsuto S, Tsujimoto M, Choe S. 2008. Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochemical and Biophysical Research Communications 374:614−19

doi: 10.1016/j.bbrc.2008.07.073
[12]

Aldukhi F, Deb A, Zhao C, Moffett AS, Shukla D. 2020. Molecular mechanism of brassinosteroid perception by the plant growth receptor BRI1. The Journal of Physical Chemistry 124:355−65

doi: 10.1021/acs.jpcb.9b09377
[13]

Xu Y, Shang W, Li L, Song Y, Wang G, et al. 2023. Transcriptome landscape analyses of the regulatory network for zygotic embryo development in Paeonia ostii. International Journal of Molecular Sciences 24:10715

doi: 10.3390/ijms241310715
[14]

Li QF, Yu JW, Lu J, Fei HY, Luo M, et al. 2018. Seed-specific expression of OsDWF4, a rate-limiting gene involved in brassinosteroids biosynthesis, improves both grain yield and quality in rice. Journal of Agricultural and Food Chemistry 66:3759−72

doi: 10.1021/acs.jafc.8b00077
[15]

Hofmann F, Schon MA, Nodine MD. 2019. The embryonic transcriptome of Arabidopsis thaliana. Plant Reproduction 32:77−91

doi: 10.1007/s00497-018-00357-2
[16]

Liu J, Wei Q, Zhao Z, Qiang F, Li G, et al. 2024. Bona fide plant steroid receptors are innovated in seed plants and angiosperms through successive whole-genome duplication events. Plant and Cell Physiology 65:pcae054

doi: 10.1093/pcp/pcae054
[17]

Caño-Delgado A, Yin Y, Yu C, Vafeados D, Mora-García S, et al. 2004. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341−51

doi: 10.1242/dev.01403
[18]

Wang C, Liu Y, Li SS, Han GZ. 2015. Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiology 167:872−86

doi: 10.1104/pp.114.247403
[19]

Kuneš I, Baláš M, Linda R, Gallo J, Nováková O. 2016. Effects of brassinosteroid application on seed germination of Norway spruce, Scots pine, Douglas fir and English oak. iForest-Biogeosciences and Forestry 10:121−27

doi: 10.3832/ifor1578-009
[20]

Xiong M, Feng GN, Gao Q, Zhang CQ, Li QF, et al. 2022. Brassinosteroid regulation in rice seed biology. Seed Biology 1:2

doi: 10.48130/seedbio-2022-0002
[21]

Sreenivasulu N, Wobus U. 2013. Seed-development programs: a systems biology-based comparison between dicots and monocots. Annual Review of Plant Biology 64:189−217

doi: 10.1146/annurev-arplant-050312-120215
[22]

Jang JC, Fujioka S, Tasaka M, Seto H, Takatsuto S, et al. 2000. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes & Development 14:1485−97

[23]

Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, et al. 2013. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiology 162:1965−77

doi: 10.1104/pp.113.217703
[24]

Jaiswal S, Båga M, Chibbar RN. 2020. Brassinosteroid receptor mutation influences starch granule size distribution in barley grains. Plant Physiology and Biochemistry 154:369−78

doi: 10.1016/j.plaphy.2020.05.043
[25]

Wang Y, Xu J, Yu J, Zhu D, Zhao Q. 2022. Maize GSK3-like kinase ZmSK2 is involved in embryonic development. Plant Science 318:111221

doi: 10.1016/j.plantsci.2022.111221
[26]

Chandler JW, Cole M, Flier A, Werr W. 2009. BIM1, a bHLH protein involved in brassinosteroid signalling, controls Arabidopsis embryonic patterning via interaction with DORNRÖSCHEN and DORNRÖSCHEN-LIKE. Plant Molecular Biology 69:57−68

doi: 10.1007/s11103-008-9405-6
[27]

Gou X, Yin H, He K, Du J, Yi J, et al. 2012. Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genetics 8:e1002452

doi: 10.1371/journal.pgen.1002452
[28]

Khew CY, Teo CJ, Chan WS, Wong HL, Namasivayam P, et al. 2015. Brassinosteroid insensitive 1-associated kinase 1 (OsI-BAK1) is associated with grain filling and leaf development in rice. Journal of Plant Physiology 182:23−32

doi: 10.1016/j.jplph.2015.05.003
[29]

Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, et al. 2009. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. The Plant Cell 21:106−17

doi: 10.1105/tpc.108.064972
[30]

Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, et al. 2010. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. The Plant Journal 63:670−79

doi: 10.1111/j.1365-313X.2010.04271.x
[31]

Shin HY, Nam KH. 2018. RAV1 negatively regulates seed development by directly repressing MINI3 and IKU2 in Arabidopsis. Molecules and Cells 41:1072−80

doi: 10.14348/molcells.2018.0259
[32]

Yang D, Shin HY, Kang HK, Shang Y, Park SY, et al. 2023. Reciprocal inhibition of expression between RAV1 and BES1 modulates plant growth and development in Arabidopsis. Journal of Integrative Plant Biology 65:1226−40

doi: 10.1111/jipb.13431
[33]

Jia D, Chen LG, Yin G, Yang X, Gao Z, et al. 2020. Brassinosteroids regulate outer ovule integument growth in part via the control of INNER NO OUTER by BRASSINOZOLE-RESISTANT family transcription factors. Journal of Integrative Plant Biology 62:1093−111

doi: 10.1111/jipb.12915
[34]

Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, et al. 2006. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251−61

doi: 10.1242/dev.02194
[35]

Ohto M, Floyd SK, Fischer RL, Goldberg RB, Harada JJ. 2009. Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reproduction 22:277−89

doi: 10.1007/s00497-009-0116-1
[36]

Sun H, Xu H, Li B, Shang Y, Wei M, et al. 2021. The brassinosteroid biosynthesis gene, ZmD11, increases seed size and quality in rice and maize. Plant Physiology and Biochemistry 160:281−93

doi: 10.1016/j.plaphy.2021.01.031
[37]

Zhu X, Liang W, Cui X, Chen M, Yin C, et al. 2015. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. The Plant Journal 82:570−81

doi: 10.1111/tpj.12820
[38]

Wu C, Trieu A, Radhakrishnan P, Kwok SF, Harris S, et al. 2008. Brassinosteroids regulate grain filling in rice. The Plant Cell 20:2130−45

doi: 10.1105/tpc.107.055087
[39]

Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, et al. 2016. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Scientific Reports 6:28298

doi: 10.1038/srep28298
[40]

Chen C, Chen H, Han C, Liu Z, Yu F, et al. 2022. 24-Epibrassinolide promotes fatty acid accumulation and the expression of related genes in Styrax tonkinensis seeds. International Journal of Molecular Sciences 23:8897

doi: 10.3390/ijms23168897
[41]

Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, et al. 2005. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. The Plant Cell 17:776−90

doi: 10.1105/tpc.104.024950
[42]

Jiang WB, Lin WH. 2013. Brassinosteroid functions in Arabidopsis seed development. Plant Signaling & Behavior 8:e25928

doi: 10.4161/psb.25928
[43]

Jiao Z, Yin L, Zhang Q, Xu W, Jia Y, et al. 2022. The putative obtusifoliol 14α-demethylase OsCYP51H3 affects multiple aspects of rice growth and development. Physiologia Plantarum 174:e13764

doi: 10.1111/ppl.13764
[44]

Xu H, Sun H, Dong J, Ma C, Li J, et al. 2022. The brassinosteroid biosynthesis gene TaD11-2A controls grain size and its elite haplotype improves wheat grain yields. Theoretical and Applied Genetics 135:2907−23

doi: 10.1007/s00122-022-04158-0
[45]

Song C, Hou Y, Li T, Liu Y, Wang XA, et al. 2024. Lon1 inactivation downregulates autophagic flux and brassinosteroid biogenesis, modulating mitochondrial proportion and seed development in Arabidopsis. International Journal of Molecular Science 25:5425

doi: 10.3390/ijms25105425
[46]

Takahashi N, Nakazawa M, Shibata K, Yokota T, Ishikawa A, et al. 2005. shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels. The Plant Journal 42:13−22

doi: 10.1111/j.1365-313X.2005.02357.x
[47]

Sun X, Xie Y, Xu K, Li J. 2024. Regulatory networks of the F-box protein FBX206 and OVATE family proteins modulate brassinosteroid biosynthesis to regulate grain size and yield in rice. Journal of Experimental Botany 75:789−801

doi: 10.1093/jxb/erad397
[48]

Li J, Zhang B, Duan P, Yan L, Yu H, et al. 2023. An endoplasmic reticulum-associated degradation-related E2-E3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice. The Plant Cell 35:1076−91

doi: 10.1093/plcell/koac364
[49]

Tian X, Li X, Zhou W, Ren Y, Wang Z, et al. 2017. Transcription factor OsWRKY53 positively regulates brassinosteroid signaling and plant architecture. Plant Physiology 175:1337−49

doi: 10.1104/pp.17.00946
[50]

Zhang J, Zhang X, Liu X, Pai Q, Wang Y, et al. 2023. Molecular network for regulation of seed size in plants. International Journal of Molecular Sciences 24:10666

doi: 10.3390/ijms241310666
[51]

Tian X, He M, Mei E, Zhang B, Tang J, et al. 2021. WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size. The Plant Cell 33:2753−75

doi: 10.1093/plcell/koab137
[52]

Huang Y, Dong H, Mou C, Wang P, Hao Q, et al. 2022. Ribonuclease H-like gene SMALL GRAIN2 regulates grain size in rice through brassinosteroid signaling pathway. Journal of Integrative Plant Biology 64:1883−900

doi: 10.1111/jipb.13333
[53]

Wang L, Niu F, Wang J, Zhang H, Zhang D, et al. 2024. Genome-wide association studies prioritize genes controlling seed size and reproductive period length in soybean. Plants 13:615

doi: 10.3390/plants13050615
[54]

Sun F, Ding L, Feng W, Cao Y, Lu F, et al. 2021. Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. Journal of Experimental Botany 72:1714−26

doi: 10.1093/jxb/eraa544
[55]

Cheng M, Yuan H, Wang R, Wang W, Zhang L, et al. 2023. Identification and characterization of BES1 genes involved in grain size development of Oryza sativa L. International Journal of Biological Macromolecules 253:127327

doi: 10.1016/j.ijbiomac.2023.127327
[56]

Zhang X, Guo W, Du D, Pu L, Zhang C. 2020. Overexpression of a maize BR transcription factor ZmBZR1 in Arabidopsis enlarges organ and seed size of the transgenic plants. Plant Sciene 292:110378

doi: 10.1016/j.plantsci.2019.110378
[57]

Du H, Yong R, Zhang J, Cai G, Wang R, et al. 2023. OsBAK2/OsSERK2 expression is repressed by OsBZR1 to modulate brassinosteroid response and grain length in rice. Journal of Experimental Botany 74:4978−93

doi: 10.1093/jxb/erad196
[58]

Wu Q, Liu Y, Huang J. 2022. CRISPR-Cas9 Mediated mutation in OsPUB43 improves grain length and weight in rice by promoting cell proliferation in spikelet hull. International Journal of Molecular Sciences 23:2347

doi: 10.3390/ijms23042347
[59]

Cheng ZJ, Zhao XY, Shao XX, Wang F, Zhou C, et al. 2014. Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. The Plant Cell 26:1053−68

doi: 10.1105/tpc.113.121566
[60]

Roh J, Park CH, Son SH, Kim SK. 2023. BES1-mediated brassinosteroid signaling negatively regulates biosynthesis and signaling of abscisic acid to increase seed size in Arabidopsis. Journal of Plant Biology 66:223−32

doi: 10.1007/s12374-022-09380-3
[61]

Roh J, Lee YE, Park CH, Kim SK. 2023. Usefulness and molecular mechanism of seed-specificity introduced by AtBZR1 and AtBES1 to improve seed yield and quality in Arabidopsis thaliana. Journal of Plant Biology 66:233−42

doi: 10.1007/s12374-023-09387-4
[62]

Verkest A, de O. Manes CL, Vercruysse S, Maes S, Van der Schueren E, et al. 2005. The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes. The Plant Cell 17:1723−36

doi: 10.1105/tpc.105.032383
[63]

Gu Y, Zhang J, Liu L, Qanmber G, Liu Z, et al. 2023. Cell cycle-dependent kinase inhibitor GhKRP6, a direct target of GhBES1.4, participates in BR regulation of cell expansion in cotton. The Plant Journal 115:1729−45

doi: 10.1111/tpj.16353
[64]

Li Q, Chen X, Zhang S, Shan S, Xiang Y. 2022. DELAY OF GERMINATION 1, the master regulator of seed dormancy, integrates the regulatory network of phytohormones at the transcriptional level to control seed dormancy. Current Issues in Molecular Biology 44:6205−17

doi: 10.3390/cimb44120423
[65]

Li LQ, Zou X, Deng MS, Peng J, Huang XL, et al. 2017. Comparative morphology, transcription, and proteomics study revealing the key molecular mechanism of camphor on the potato tuber sprouting effect. International Journal of Molecular Sciences 18:2280

doi: 10.3390/ijms18112280
[66]

Tong X, Wang Y, Sun A, Bello BK, Ni S, et al. 2018. Notched belly grain 4, a novel allele of Dwarf 11, regulates grain shape and seed germination in Rice (Oryza sativa L.). International Journal of Molecular Sciences 19:4069

doi: 10.3390/ijms19124069
[67]

Kim SY, Warpeha KM, Huber SC. 2019. The brassinosteroid receptor kinase, BRI1, plays a role in seed germination and the release of dormancy by cold stratification. Journal of Plant Physiology 241:153031

doi: 10.1016/j.jplph.2019.153031
[68]

Sun Y, Fan XY, Cao DM, Tang W, He K, et al. 2010. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell 19:765−77

doi: 10.1016/j.devcel.2010.10.010
[69]

Steber CM, McCourt P. 2001. A role for brassinosteroids in germination in Arabidopsis. Plant Physiology 125:763−69

doi: 10.1104/pp.125.2.763
[70]

Zhao Z, Wu S, Gao H, Tang W, Wu X, et al. 2023. The BR signaling pathway regulates primary root development and drought stress response by suppressing the expression of PLT1 and PLT2 in Arabidopsis thaliana. Frontiers in Plant Science 14:1187605

doi: 10.3389/fpls.2023.1187605
[71]

Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, et al. 2015. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. The Plant Cell 27:2261−72

doi: 10.1105/tpc.15.00433
[72]

Ullah H, Chen JG, Wang SC, Jones AM. 2002. Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiology 129:897−907

doi: 10.1104/pp.005017
[73]

Zhong C, Patra B, Tang Y, Li X, Yuan L, et al. 2021. A transcriptional hub integrating gibberellin-brassinosteroid signals to promote seed germination in Arabidopsis. Journal of Experimental Botany 72:4708−20

doi: 10.1093/jxb/erab192
[74]

Bai MY, Shang JX, Oh E, Fan M, Bai Y, et al. 2012. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology 14:810−17

doi: 10.1038/ncb2546
[75]

Li QF, Zhou Y, Xiong M, Ren XY, Han L, et al. 2020. Gibberellin recovers seed germination in rice with impaired brassinosteroid signalling. Plant Science 293:110435

doi: 10.1016/j.plantsci.2020.110435
[76]

Liu S, Cai C, Li L, Wen H, Liu J, et al. 2023. StSN2 interacts with the brassinosteroid signaling suppressor StBIN2 to maintain tuber dormancy. Horticulture Research 10:uhad228

doi: 10.1093/hr/uhad228
[77]

Ryu H, Cho H, Bae W, Hwang I. 2014. Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nature Communications 5:4138

doi: 10.1038/ncomms5138
[78]

Divi UK, Krishna P. 2010. Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. Journal of Plant Growth Regulation 29:385−93

doi: 10.1007/s00344-010-9150-3
[79]

Xue LW, Du JB, Yang H, Xu F, Yuan S, et al. 2009. Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Journal of Biosciences 64:225−30

doi: 10.1515/znc-2009-3-413
[80]

Wang H, Tang J, Liu J, Hu J, Liu J, et al. 2018. Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Molecular Plant 11:315−25

doi: 10.1016/j.molp.2017.12.013
[81]

Yang X, Bai Y, Shang J, Xin R, Tang W. 2016. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1. Plant, Cell & Environment 39:1994−2003

doi: 10.1111/pce.12763
[82]

Liu YJ, An JP, Wang XF, Gao N, Wang X, et al. 2021. MdBZR1 regulates ABA response by modulating the expression of MdABI5 in apple. Plant Cell Reports 40:1127−39

doi: 10.1007/s00299-021-02692-7
[83]

Zhao X, Dou L, Gong Z, Wang X, Mao T. 2019. BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis. New Phytologist 221:908−18

doi: 10.1111/nph.15437
[84]

Hu Y, Yu D. 2014. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. The Plant Cell 26:4394−408

doi: 10.1105/tpc.114.130849
[85]

Deng J, Kong L, Zhu Y, Pei D, Chen X, et al. 2022. BAK1 plays contrasting roles in regulating abscisic acid-induced stomatal closure and abscisic acid-inhibited primary root growth in Arabidopsis. Journal of Integrative Plant Biology 64:1264−80

doi: 10.1111/jipb.13257
[86]

Asatsuma S, Sawada C, Itoh K, Okito M, Kitajima A, et al. 2005. Involvement of α-amylase I-1 in starch degradation in rice chloroplasts. Plant and Cell Physiology 46:858−69

doi: 10.1093/pcp/pci091
[87]

Xiong M, Yu J, Wang J, Gao Q, Huang L, et al. 2022. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module. Plant Physiology 189:402−18

doi: 10.1093/plphys/kiac043
[88]

Xiong M, Chu L, Li Q, Yu J, Yang Y, et al. 2021. Brassinosteroid and gibberellin coordinate rice seed germination and embryo growth by regulating glutelin mobilization. The Crop Journal 9:1039−48

doi: 10.1016/j.cj.2020.11.006
[89]

Roh J, Moon J, Lee YE, Park CH, Kim SK. 2021. Seed-specific expression of Arabidopsis AtCYP85A2 produces biologically active brassinosteroids such as castasterone and brassinolide to improve grain yield and quality in seeds of Brachypodium Distachyon. Frontiers in Plant Science 12:639508

doi: 10.3389/fpls.2021.639508