[1]

Orhan DD, Özçelik B, Özgen S, Ergun F. 2010. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiological research 165:496−504

doi: 10.1016/j.micres.2009.09.002
[2]

Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. 2020. Flavonoids as anticancer agents. Nutrients 12:457

doi: 10.3390/nu12020457
[3]

Sychrová A, Koláriková I, Žemlička M, Šmejkal K. 2020. Natural compounds with dual antimicrobial and anti-inflammatory effects. Phytochemistry reviews 19:1471−502

doi: 10.1007/s11101-020-09694-5
[4]

Mahbub AA, Le Maitre CL, Haywood-Small SL, McDougall GJ, Cross NA, et al. 2013. Differential effects of polyphenols on proliferation and apoptosis in human myeloid and lymphoid leukemia cell lines. Anti-Cancer Agents in Medicinal Chemistry 13:1601−13

doi: 10.2174/18715206113139990303
[5]

Ravishankar D, Rajora AK, Greco F, Osborn HMI. 2013. Flavonoids as prospective compounds for anti-cancer therapy. The International Journal of Biochemistry & Cell Biology 45:2821−31

doi: 10.1016/j.biocel.2013.10.004
[6]

Wen X, Walle T. 2006. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug metabolism and disposition 34:1786−92

doi: 10.1124/dmd.106.011122
[7]

Masuda S, Maeda-Yamamoto M, Usui S, Fujisawa T. 2014. 'Benifuuki' green tea containing O-methylated catechin reduces symptoms of Japanese cedar pollinosis: a randomized, double-blind, placebo-controlled trial. Allergology International 63:211−17

doi: 10.2332/allergolint.13-OA-0620
[8]

Kurita I, Maeda-Yamamoto M, Tachibana H, Kamei M. 2010. Antihypertensive effect of Benifuuki tea containing O-methylated EGCG. Journal of Agricultural and Food Chemistry 58:1903−8

doi: 10.1021/jf904335g
[9]

Cui MY, Lu AR, Li JX, Liu J, Fang YM, et al. 2022. Two types of O-methyltransferase are involved in biosynthesis of anticancer methoxylated 4′-deoxyflavones in Scutellaria baicalensis Georgi. Plant Biotechnology Journal 20:129−42

doi: 10.1111/pbi.13700
[10]

Kim BG, Sung SH, Chong Y, Lim Y, Ahn JH. 2010. Plant flavonoid O-methyltransferases: substrate specificity and application. Journal of Plant Biology 53:321−29

doi: 10.1007/s12374-010-9126-7
[11]

Walle T. 2009. Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. International Journal of Molecular Sciences 10:5002−19

doi: 10.3390/ijms10115002
[12]

Koirala N, Thuan NH, Ghimire GP, Van Thang D, Sohng JK. 2016. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme and Microbial Technology 86:103−16

doi: 10.1016/j.enzmictec.2016.02.003
[13]

Berim A, Hyatt DC, Gang DR. 2012. A set of regioselective O-methyltransferases gives rise to the complex pattern of methoxylated flavones in sweet basil. Plant Physiology 160:1052−69

doi: 10.1104/pp.112.204164
[14]

Joshi CP, Chiang VL. 1998. Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Molecular Biology 37:663−74

doi: 10.1023/A:1006035210889
[15]

Cacace S, Schröder G, Wehinger E, Strack D, Schmidt J, Schröder J. 2003. A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations. Phytochemistry 62:127−37

doi: 10.1016/S0031-9422(02)00483-1
[16]

Gauthier A, Gulick PJ, Ibrahim RK. 1998. Characterization of two cDNA clones which encode O-methyltransferases for the methylation of both flavonoid and phenylpropanoid compounds. Archives of Biochemistry and Biophysics 351:243−49

doi: 10.1006/abbi.1997.0554
[17]

Kim BG, Lee HJ, Park Y, Lim Y, Ahn JH. 2006. Characterization of an O-methyltransferase from soybean. Plant Physiology and Biochemistry 44:236−41

doi: 10.1016/j.plaphy.2006.05.003
[18]

Zhou JM, Seo YW, Ibrahim RK. 2009. Biochemical characterization of a putative wheat caffeic acid O-methyltransferase. Plant Physiology and Biochemistry 47:322−26

doi: 10.1016/j.plaphy.2008.11.011
[19]

Ibdah M, Zhang XH, Schmidt J, Vogt T. 2003. A novel Mg2+-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. Journal of Biological Chemistry 278:43961−72

doi: 10.1074/jbc.M304932200
[20]

Zhong R, Morrison WH III , Himmelsbach DS, Poole FL II, Ye ZH. 2000. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiology 124:563−78

doi: 10.1104/pp.124.2.563
[21]

Tang L, Li P, Feng B, Zhao W, Chen Y. 2023. Research progress on chemical constituents and application values of Chinese endemic plant Musella lasiocarpa. Journal of Anhui Agricultural Sciences 51(3):15−22

doi: 10.3969/j.issn.0517-6611.2023.03.004
[22]

Dong LB, He J, Li XY, Wu XD, Deng X, et al. 2011. Chemical constituents from the aerial parts of Musella lasiocarpa. Natural Products and Bioprospecting 1:41−47

doi: 10.1007/s13659-011-0007-7
[23]

Li R, Ru Y, Wang Z, He X, Kong KW, et al. 2021. Phytochemical composition, antioxidant activity, and enzyme inhibitory activities (α-glucosidase, xanthine oxidase, and acetylcholinesterase) of Musella lasiocarpa. Molecules 26:4472

doi: 10.3390/molecules26154472
[24]

Zhao W, Wu J, Tian M, Xu S, Hu S, et al. 2024. Characterization of O-methyltransferases in the biosynthesis of phenylphenalenone phytoalexins based on the telomere-to-telomere gapless genome of Musella lasiocarpa. Horticulture Research 11:uhae042

doi: 10.1093/hr/uhae042
[25]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 10:1733−42

doi: 10.1016/j.molp.2023.09.010
[26]

Liscombe DK, Louie GV, Noel JP. 2012. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Natural Product Reports 29:1238−50

doi: 10.1039/c2np20029e
[27]

Yang H, Ahn JH, Ibrahim RK, Lee S, Lim Y. 2004. The three-dimensional structure of Arabidopsis thaliana O-methyltransferase predicted by homology-based modelling. Journal of Molecular Graphics and Modelling 23:77−87

doi: 10.1016/j.jmgm.2004.02.001
[28]

Tahara S. 2007. A journey of twenty-five years through the ecological biochemistry of flavonoids. Bioscience, Biotechnology, and Biochemistry 71:1387−404

doi: 10.1271/bbb.70028
[29]

Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126:485−93

doi: 10.1104/pp.126.2.485
[30]

Brunetti C, Fini A, Sebastiani F, Gori A, Tattini M. 2018. Modulation of phytohormone signaling: a primary function of flavonoids in plant-environment interactions. Frontiers in Plant Science 9:1042

doi: 10.3389/fpls.2018.01042
[31]

Samanta A, Das G, Das SK. 2011. Roles of flavonoids in plants. Carbon 100:12−35

[32]

Chang J, Guo Y, Yan J, Zhang Z, Yuan L, et al. 2021. The role of watermelon caffeic acid O-methyltransferase (ClCOMT1) in melatonin biosynthesis and abiotic stress tolerance. Horticulture Research 8:210

doi: 10.1038/s41438-021-00645-5
[33]

Falcone Ferreyra ML, Rius S, Emiliani J, Pourcel L, Feller A, et al. 2010. Cloning and characterization of a UV-B-inducible maize flavonol synthase. The Plant Journal 62:77−91

doi: 10.1111/j.1365-313X.2010.04133.x
[34]

Imai K, Nakanishi I, Ohkubo K, Ohba Y, Arai T, et al. 2017. Synthesis of methylated quercetin analogues for enhancement of radical-scavenging activity. RSC Advances 7:17968−79

doi: 10.1039/C7RA02329D
[35]

Li NG, Shi ZH, Tang YP, Yang JP, Lu TL, et al. 2011. Synthetic studies on the construction of 7-O-methylquercetin through regioselective protection and alkylation of quercetin. Chinese Chemical Letters 22:5−8

doi: 10.1016/j.cclet.2010.07.012
[36]

Mulati A, Zhang X, Zhao T, Ren B, Wang L, et al. 2021. Isorhamnetin attenuates high-fat and high-fructose diet induced cognitive impairments and neuroinflammation by mediating MAPK and NFκB signaling pathways. Food & Function 12:9261−72

doi: 10.1039/d0fo03165h
[37]

Iwase Y, Takemura Y, Ju-Ichi M, Ito C, Furukawa H, et al. 2000. Inhibitory effect of flavonoids from Citrus plants on Epstein–Barr virus activation and two-stage carcinogenesis of skin tumors. Cancer Letters 154:101−5

doi: 10.1016/S0304-3835(00)00386-4
[38]

Wen J, Wang Y, Lu X, Pan H, Jin D, et al. 2024. An integrated multi-omics approach reveals polymethoxylated flavonoid biosynthesis in Citrus reticulata cv. Chachiensis. Nature Communications 15:3991

doi: 10.1038/s41467-024-48235-y
[39]

Tan Y, Yang J, Jiang Y, Sun S, Wei X, et al. 2022. Identification and characterization of two Isatis indigotica O-methyltransferases methylating C-glycosylflavonoids. Horticulture Research 9:uhac140

doi: 10.1093/hr/uhac140
[40]

Liu AZ, Kress WJ, Long CL. 2003. The ethnobotany of Musella lasiocarpa (Musaceae), an endemic plant of southwest China. Economic botany 57:279−81

doi: 10.1663/0013-0001(2003)057[0279:TEOMLM]2.0.CO;2
[41]

Long C, Ahmed S, Wang X, Liu Y, Long B, et al. 2008. Why Musella lasiocarpa (Musaceae) is used in southwest China to feed pigs. Economic Botany 62:182−86

doi: 10.1007/s12231-008-9013-z
[42]

Cho MH, Park HL, Park JH, Lee SW, Bhoo SH, et al. 2012. Characterization of regiospecific flavonoid 3′/5′-O-methyltransferase from tomato and its application in flavonoid biotransformation. Journal of the Korean Society for Applied Biological Chemistry 55:749−55

doi: 10.1007/s13765-012-2193-3
[43]

Schmidt A, Li C, Daniel Jones A, Pichersky E. 2012. Characterization of a flavonol 3-O-methyltransferase in the trichomes of the wild tomato species Solanum habrochaites. Planta 236:839−49

doi: 10.1007/s00425-012-1676-0
[44]

Schmidt A, Li C, Shi F, Jones AD, Pichersky E. 2011. Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3′/5′- and 7/4′-myricetin O-methyltransferases. Plant Physiology 155:1999−2009

doi: 10.1104/pp.110.169961
[45]

Zhou JM, Gold ND, Martin VJ, Wollenweber E, Ibrahim RK. 2006. Sequential O-methylation of tricetin by a single gene product in wheat. Biochimica et Biophysica Acta (BBA)-General Subjects 1760:1115−24

doi: 10.1016/j.bbagen.2006.02.008
[46]

Kim J, Matsuba Y, Ning J, Schilmiller AL, Hammar D, et al. 2014. Analysis of natural and induced variation in tomato glandular trichome flavonoids identifies a gene not present in the reference genome. The Plant Cell 26:3272−85

doi: 10.1105/tpc.114.129460