[1]

Sun TP, Gubler F. 2004. Molecular mechanism of gibberellin signaling in plants. Annual Review of Plant Biology 55:197−223

doi: 10.1146/annurev.arplant.55.031903.141753
[2]

Sun TP. 2008. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. The Arabidopsis Book 6:e0103

doi: 10.1199/tab.0103
[3]

Silverstone AL, Sun T. 2000. Gibberellins and the Green Revolution. Trends in Plant Science 5:1−2

doi: 10.1016/S1360-1385(99)01516-2
[4]

Sanchez P, Nehlin L, Greb T. 2012. From thin to thick: major transitions during stem development. Trends in Plant Science 17:113−21

doi: 10.1016/j.tplants.2011.11.004
[5]

Eriksson ME, Israelsson M, Olsson O, Moritz T. 2000. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology 18:784−88

doi: 10.1038/77355
[6]

Elias AA, Busov VB, Kosola KR, Ma C, Etherington E, et al. 2012. Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar. Plant Physiology 160:1130−44

doi: 10.1104/pp.112.200741
[7]

Campbell L, Turner S. 2017. Regulation of vascular cell division. Journal of Experimental Botany 68:27−43

doi: 10.1093/jxb/erw448
[8]

Ye ZH, Zhong R. 2015. Molecular control of wood formation in trees. Journal of Experimental Botany 66:4119−31

doi: 10.1093/jxb/erv081
[9]

Gao X, Zhang Y, He Z, Fu X. 2017. Gibberellins. In Hormone Metabolism and Signaling in Plants, eds Li J, Li C, Smith SM. New York: Elsevier Ltd pp. 107−60. doi: 10.1016/B978-0-12-811562-6.00004-9

[10]

Little CHA, Savidge RA. 1987. The role of plant-growth regulators in forest tree cambial growth. Plant Growth Regulation 6:137−69

doi: 10.1007/BF00043953
[11]

Björklund S, Antti H, Uddestrand I, Moritz T, Sundberg B. 2007. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. The Plant Journal 52:499−511

doi: 10.1111/j.1365-313X.2007.03250.x
[12]

Ridoutt BG, Pharis RP, Sands R. 1996. Fibre length and gibberellins A1 and A20 are decreased in Eucalyptus globulus by acylcyclohexanedione injected into the stem. Physiologia Plantarum 96:559−66

doi: 10.1111/j.1399-3054.1996.tb00227.x
[13]

Israelsson M, Eriksson ME, Hertzberg M, Aspeborg H, Nilsson P, et al. 2003. Changes in gene expression in the wood-forming tissue of transgenic hybrid aspen with increased secondary growth. Plant Molecular Biology 52:893−903

doi: 10.1023/A:1025097410445
[14]

Gou J, Ma C, Kadmiel M, Gai Y, Strauss S, et al. 2011. Tissue-specific expression of Populus C19 GA 2-oxidases differentially regulate above- and below-ground biomass growth through control of bioactive GA concentrations. New Phytologist 192:626−39

doi: 10.1111/j.1469-8137.2011.03837.x
[15]

Mauriat M, Moritz T. 2009. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. The Plant Journal 58:989−1003

doi: 10.1111/j.1365-313X.2009.03836.x
[16]

Shani E, Weinstain R, Zhang Y, Castillejo C, Kaiserli E, et al. 2013. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proceedings of the National Academy of Sciences of the United States of America 110:4834−39

doi: 10.1073/pnas.1300436110
[17]

Regnault T, Davière JM, Achard P. 2016. Long-distance transport of endogenous gibberellins in Arabidopsis. Plant Signaling & Behavior 11:e1110661

doi: 10.1080/15592324.2015.1110661
[18]

Yamaguchi S, Kamiya Y, Sun T. 2001. Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. The Plant Journal 28:443−53

doi: 10.1046/j.1365-313X.2001.01168.x
[19]

Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, et al. 2008. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. The Plant Cell 20:320−36

doi: 10.1105/tpc.107.057752
[20]

Eriksson S, Böhlenius H, Moritz T, Nilsson O. 2006. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. The Plant Cell 18:2172−81

doi: 10.1105/tpc.106.042317
[21]

Regnault T, Davière JM, Wild M, Sakvarelidze-Achard L, Heintz D, et al. 2015. The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis. Nature Plants 1:15073

doi: 10.1038/nplants.2015.73
[22]

Bhalerao RP, Fischer U. 2017. Environmental and hormonal control of cambial stem cell dynamics. Journal of Experimental Botany 68:79−87

doi: 10.1093/jxb/erw466
[23]

Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, et al. 2011. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. The Plant Cell 23:1322−36

doi: 10.1105/tpc.111.084020
[24]

Dayan J, Voronin N, Gong F, Sun T, Hedden P, et al. 2012. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. The Plant Cell 24:66−79

doi: 10.1105/tpc.111.093096
[25]

Israelsson M, Sundberg B, Moritz T. 2005. Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. The Plant Journal 44:494−504

doi: 10.1111/j.1365-313X.2005.02547.x
[26]

Immanen J, Nieminen K, Smolander OP, Kojima M, Alonso Serra J, et al. 2016. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology 26:1990−97

doi: 10.1016/j.cub.2016.05.053
[27]

Jia Z, Gou J, Sun Y, Yuan L, Tang Q, et al. 2010. Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). Tree Physiology 30:1599−605

doi: 10.1093/treephys/tpq093
[28]

Chen S, Songkumarn P, Liu J, Wang GL. 2009. A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiology 150:1111−21

doi: 10.1104/pp.109.137125
[29]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30:2725−29

doi: 10.1093/molbev/mst197
[30]

Rubinovich L, Weiss D. 2010. The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta. The Plant Journal 64:1018−27

doi: 10.1111/j.1365-313X.2010.04390.x
[31]

Yamaguchi M, Kubo M, Fukuda H, Demura T. 2008. VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. The Plant Journal 55:652−64

doi: 10.1111/j.1365-313X.2008.03533.x
[32]

Hedden P, Thomas SG. 2012. Gibberellin biosynthesis and its regulation. Biochemical Journal 444:11−25

doi: 10.1042/BJ20120245
[33]

Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, et al. 2017. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. The Plant Cell 29:1585−604

doi: 10.1105/tpc.17.00153
[34]

Fleet CM, Yamaguchi S, Hanada A, Kawaide H, David CJ, et al. 2003. Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiology 132:830−39

doi: 10.1104/pp.103.021725
[35]

Prisic S, Peters RJ. 2007. Synergistic substrate inhibition of ent-copalyl diphosphate synthase: a potential feed-forward inhibition mechanism limiting gibberellin metabolism. Plant Physiology 144:445−54

doi: 10.1104/pp.106.095208
[36]

Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, et al. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology 134:1642−53

doi: 10.1104/pp.103.033696
[37]

Starks CM, Back KW, Chappell J, Noel JP. 1997. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277:1815−20

doi: 10.1126/science.277.5333.1815
[38]

Suer S, Agusti J, Sanchez P, Schwarz M, Greb T. 2011. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. The Plant Cell 23:3247−59

doi: 10.1105/tpc.111.087874
[39]

Rigal A, Yordanov YS, Perrone I, Karlberg A, Tisserant E, et al. 2012. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiology 160:1996−2006

doi: 10.1104/pp.112.204453
[40]

Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, et al. 2007. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proceedings of the National Academy of Sciences of the United States of America 104:14537−42

doi: 10.1073/pnas.0704166104
[41]

Menges M, Pavesi G, Morandini P, Bögre L, Murray JAH. 2007. Genomic organization and evolutionary conservation of plant D-type cyclins. Plant Physiology 145:1558−76

doi: 10.1104/pp.107.104901
[42]

Zhu Y, Song D, Sun J, Wang X, Li L. 2013. PtrHB7, a class III HD-Zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Molecular Plant 6:1331−43

doi: 10.1093/mp/sss164
[43]

Jones RL, Phillips IDJ. 1966. Organs of gibberellin synthesis in light-grown sunflower plants. Plant Physiology 41:1381−86

doi: 10.1104/pp.41.8.1381
[44]

Eriksson ME, Moritz T. 2002. Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula L. × P. tremuloides Michx.). Planta 214:920−30

doi: 10.1007/s00425-001-0703-3
[45]

Biemelt S, Tschiersch H, Sonnewald U. 2004. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology 135:254−65

doi: 10.1104/pp.103.036988
[46]

Jeon HW, Cho JS, Park EJ, Han KH, Choi YI, et al. 2016. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. Plant Biotechnology Journal 14:1161−70

doi: 10.1111/pbi.12484
[47]

Israelsson M, Mellerowicz E, Chono M, Gullberg J, Moritz T. 2004. Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development. Plant Physiology 135:221−30

doi: 10.1104/pp.104.038935
[48]

Tuominen H, Puech L, Fink S, Sundberg B. 1997. A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiology 115:577−85

doi: 10.1104/pp.115.2.577
[49]

Etchells JP, Turner SR. 2010. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767−74

doi: 10.1242/dev.044941
[50]

Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, et al. 2008. Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Sciences of the United States of America 105:20032−37

doi: 10.1073/pnas.0805617106
[51]

Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, et al. 2008. Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences of the United States of America 105:20027−31

doi: 10.1073/pnas.0805619105