[1]

Bhat ZF, Kumar S, Fayaz H. 2015. In vitro meat production: challenges and benefits over conventional meat production. Journal of Integrative Agriculture 14:241−48

doi: 10.1016/S2095-3119(14)60887-X
[2]

Messmer T, Klevernic I, Furquim C, Ovchinnikova E, Dogan A, et al. 2022. A serum-free media formulation for cultured meat production supports bovine satellite cell differentiation in the absence of serum starvation. Nature Food 3:74−85

doi: 10.1038/s43016-021-00419-1
[3]

Yen FC, Glusac J, Levi S, Zernov A, Baruch L, et al. 2023. Cultured meat platform developed through the structuring of edible microcarrier-derived microtissues with oleogel-based fat substitute. Nature Communications 14:2942

doi: 10.1038/s41467-023-38593-4
[4]

Stout AJ, Mirliani AB, Rittenberg ML, Shub M, White EC, et al. 2022. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Communications Biology 5:466

doi: 10.1038/s42003-022-03423-8
[5]

Schmidt M, Schüler SC, Hüttner SS, von Eyss B, von Maltzahn J. 2019. Adult stem cells at work: regenerating skeletal muscle. Cellular and Molecular Life Sciences 76:2559−70

doi: 10.1007/s00018-019-03093-6
[6]

Feige P, Brun CE, Ritso M, Rudnicki MA. 2018. Orienting muscle stem cells for regeneration in homeostasis, aging, and disease. Cell Stem Cell 23:653−64

doi: 10.1016/j.stem.2018.10.006
[7]

Tierney MT, Sacco A. 2016. Satellite cell heterogeneity in skeletal muscle homeostasis. Trends in Cell Biology 26:434−44

doi: 10.1016/j.tcb.2016.02.004
[8]

Olguin HC, Olwin BB. 2004. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Developmental Biology 275:375−88

doi: 10.1016/j.ydbio.2004.08.015
[9]

Bentzinger CF, Wang YX, Rudnicki MA. 2012. Building muscle: molecular regulation of myogenesis. Cold Spring Harbor Perspectives in Biology 4:a008342

doi: 10.1101/cshperspect.a008342
[10]

Zhu H, Wu Z, Ding X, Post MJ, Guo R, et al. 2022. Production of cultured meat from pig muscle stem cells. Biomaterials 287:121650

doi: 10.1016/j.biomaterials.2022.121650
[11]

Chen Y, Zhang W, Ding X, Ding S, Tang C, et al. 2024. Programmable scaffolds with aligned porous structures for cell cultured meat. Food Chemistry 430:137098

doi: 10.1016/j.foodchem.2023.137098
[12]

Li Y, Jiang X, Li Y, Yan X, Tang L, et al. 2024. A smartphone-adaptable fluorescent probe for visual monitoring of fish freshness and its application in fluorescent dyes. Food Chemistry 458:140239

doi: 10.1016/j.foodchem.2024.140239
[13]

Frontera WR, Ochala J. 2015. Skeletal muscle: a brief review of structure and function. Calcified Tissue International 96:183−95

doi: 10.1007/s00223-014-9915-y
[14]

Listrat A, Lebret B, Louveau I, Astruc T, Bonnet M, et al. 2016. How muscle structure and composition influence meat and flesh quality. The Scientific World Journal 2016:3182746

doi: 10.1155/2016/3182746
[15]

Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, et al. 2024. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Molecular Aspects of Medicine 97:101277

doi: 10.1016/j.mam.2024.101277
[16]

Zagury Y, Ianovici I, Landau S, Lavon N, Levenberg S. 2022. Engineered marble-like bovine fat tissue for cultured meat. Communications Biology 5:927

doi: 10.1038/s42003-022-03852-5
[17]

Yuen JSK Jr, Stout AJ, Kawecki NS, Letcher SM, Theodossiou SK, et al. 2022. Perspectives on scaling production of adipose tissue for food applications. Biomaterials 280:121273

doi: 10.1016/j.biomaterials.2021.121273
[18]

Fisher GJ, Varani J, Voorhees JJ. 2008. Looking older: fibroblast collapse and therapeutic implications. Archives of Dermatology 144:666−72

doi: 10.1001/archderm.144.5.666
[19]

Lee YC, Kurtova AV, Xiao J, Nikolos F, Hayashi K, et al. 2019. Collagen-rich airway smooth muscle cells are a metastatic niche for tumor colonization in the lung. Nature Communications 10:2131

doi: 10.1038/s41467-019-09878-4
[20]

Graham MF, Drucker DEM, Diegelmann RF, Elson CO. 1987. Collagen synthesis by human intestinal smooth muscle cells in culture. Gastroenterology 92:400−05

doi: 10.1016/0016-5085(87)90134-X
[21]

Zheng Y, Zhu H, Wu Z, Song W, Tang C, et al. 2021. Evaluation of the effect of smooth muscle cells on the quality of cultured meat in a model for cultured meat. Food Research International 150:110786

doi: 10.1016/j.foodres.2021.110786
[22]

Yang R, Fei Z, Wang L, Tang H, Sun W, et al. 2024. Highly efficient isolation and 3D printing of fibroblasts for cultured meat production. Frontiers in Sustainable Food Systems 8:1358862

doi: 10.3389/fsufs.2024.1358862
[23]

Reiss J, Robertson S, Suzuki M. 2021. Cell sources for cultivated meat: applications and considerations throughout the production workflow. International Journal of Molecular Sciences 22:7513

doi: 10.3390/ijms22147513
[24]

Giordani L, He GJ, Negroni E, Sakai H, Law JYC, et al. 2019. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations. Molecular Cell 74:609−621.e6

doi: 10.1016/j.molcel.2019.02.026
[25]

De Micheli AJ, Spector JA, Elemento O, Cosgrove BD. 2020. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skeletal Muscle 10:19

doi: 10.1186/s13395-020-00236-3
[26]

De Micheli AJ, Laurilliard EJ, Heinke CL, Ravichandran H, Fraczek P, et al. 2020. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration. Cell Reports 30:3583−3595.e5

doi: 10.1016/j.celrep.2020.02.067
[27]

Rubenstein AB, Smith GR, Raue U, Begue G, Minchev K, et al. 2020. Single-cell transcriptional profiles in human skeletal muscle. Scientific Reports 10:229

doi: 10.1038/s41598-019-57110-6
[28]

Williams K, Yokomori K, Mortazavi A. 2022. Heterogeneous skeletal muscle cell and nucleus populations identified by single-cell and single-nucleus resolution transcriptome assays. Frontiers in Genetics 13:835099

doi: 10.3389/fgene.2022.835099
[29]

Matsuyoshi Y, Akahoshi M, Nakamura M, Tatsumi R, Mizunoya W. 2019. Isolation and purification of satellite cells from young rats by percoll density gradient centrifugation. In Myogenesis, ed. Rønning S. Volume 1889. pp. 81−93. doi: 10.1007/978-1-4939-8897-6_6

[30]

Panci G, A EMK, Mounier R, Chazaud B, Juban G. 2023. Co-cultures of macrophages with muscle stem cells with fibroadipogenic precursor cells from regenerating skeletal muscle. In Skeletal Muscle Stem Cells, ed. Asakura A. Volume 2640. pp. 57−71. doi: 10.1007/978-1-0716-3036-5_5

[31]

Liu L, Cheung TH, Charville GW, Rando TA. 2015. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nature Protocols 10:1612−24

doi: 10.1038/nprot.2015.110
[32]

Li MY, Sibbons PD, Hornick P, Ansari T. 2007. The use of commercially available antibodies in the study of vascular disease using a porcine model. Comparative Clinical Pathology 16:15−23

doi: 10.1007/s00580-006-0660-0
[33]

McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, et al. 2002. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proceedings of the National Academy of Sciences of the United States of America 99:1341−46

doi: 10.1073/pnas.032438799
[34]

Xu X, Wilschut KJ, Kouklis G, Tian H, Hesse R, et al. 2015. Human satellite cell transplantation and regeneration from diverse skeletal muscles. Stem Cell Reports 5:419−34

doi: 10.1016/j.stemcr.2015.07.016
[35]

Dohmen RGJ, Hubalek S, Melke J, Messmer T, Cantoni F, et al. 2022. Muscle-derived fibro-adipogenic progenitor cells for production of cultured bovine adipose tissue. NPJ Science of Food 6:6

doi: 10.1038/s41538-021-00122-2
[36]

Messmer T, Dohmen RGJ, Schaeken L, Melzener L, Hueber R, et al. 2023. Single-cell analysis of bovine muscle-derived cell types for cultured meat production. Frontiers in Nutrition 10:1212196

doi: 10.3389/fnut.2023.1212196
[37]

Ding S, Wang F, Liu Y, Li S, Zhou G, et al. 2017. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discovery 3:17003

doi: 10.1038/cddiscovery.2017.3
[38]

Fisher SA. 2010. Vascular smooth muscle phenotypic diversity and function. Physiological Genomics 42a:169−87

doi: 10.1152/physiolgenomics.00111.2010
[39]

Mueller AA, van Velthoven CT, Fukumoto KD, Cheung TH, Rando TA. 2016. Intronic polyadenylation of PDGFRα in resident stem cells attenuates muscle fibrosis. Nature 540:276−79

doi: 10.1038/nature20160
[40]

Asakura A, Kikyo N. 2022. Immunofluorescence analysis of myogenic differentiation. Methods in Cell Biology 170:117−25

doi: 10.1016/bs.mcb.2022.02.010
[41]

Klurfeld DM. 2018. What is the role of meat in a healthy diet? Animal Frontiers 8:5−10

doi: 10.1093/af/vfy009
[42]

Choi KH, Yoon JW, Kim M, Jeong J, Ryu M, et al. 2020. Optimization of culture conditions for maintaining pig muscle stem cells in vitro. Food Science of Animal Resources 40:659−67

doi: 10.5851/kosfa.2020.e39
[43]

Ding X, Zhuge W, Zhang Y, Ding S, Wang J, et al. 2023. Microfluidic generation of bioinspired core–shell structured microfibers for cultured meat. Chemical Engineering Journal 478:147467

doi: 10.1016/j.cej.2023.147467
[44]

Pasitka L, Cohen M, Ehrlich A, Gildor B, Reuveni E, et al. 2023. Spontaneous immortalization of chicken fibroblasts generates stable high-yield cell lines for serum-free production of cultured meat. Nature Food 4:35−50

doi: 10.1038/s43016-022-00658-w
[45]

Zhu G, Gao D, Li L, Yao Y, Wang Y, et al. 2023. Generation of three-dimensional meat-like tissue from stable pig epiblast stem cells. Nature Communications 14:8163

doi: 10.1038/s41467-023-44001-8
[46]

Williams LA, Davis-Dusenbery BN, Eggan KC. 2012. SnapShot: directed differentiation of pluripotent stem cells. Cell 149:1174−1174.e1

doi: 10.1016/j.cell.2012.05.015
[47]

Olenic M, Deelkens C, Heyman E, De Vlieghere E, Zheng X, et al. 2025. Review: livestock cell types with myogenic differentiation potential: considerations for the development of cultured meat. Animal 19:101242

doi: 10.1016/j.animal.2024.101242
[48]

Mukund K, Subramaniam S. 2020. Skeletal muscle: a review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 12:e1462

doi: 10.1002/wsbm.1462
[49]

Forcina L, Miano C, Pelosi L, Musarò A. 2019. An overview about the biology of skeletal muscle satellite cells. Current Genomics 20:24−37

doi: 10.2174/1389202920666190116094736
[50]

Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, et al. 2004. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119:543−54

doi: 10.1016/j.cell.2004.10.021
[51]

Spiegelman BM, Ginty CA. 1983. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell 35:657−66

doi: 10.1016/0092-8674(83)90098-3
[52]

Tran T, Ens-Blackie K, Rector ES, Stelmack GL, McNeill KD, et al. 2007. Laminin-binding integrin alpha7 is required for contractile phenotype expression by human airway myocytes. American Journal of Respiratory Cell and Molecular Biology 37:668−80

doi: 10.1165/rcmb.2007-0165OC
[53]

Schöber S, Mielenz D, Echtermeyer F, Hapke S, Pöschl E, et al. 2000. The role of extracellular and cytoplasmic splice domains of α7-integrin in cell adhesion and migration on laminins. Experimental Cell Research 255:303−13

doi: 10.1006/excr.2000.4806
[54]

Chang KC, da Costa N, Blackley R, Southwood O, Evans G, et al. 2003. Relationships of myosin heavy chain fibre types to meat quality traits in traditional and modern pigs. Meat Science 64:93−103

doi: 10.1016/S0309-1740(02)00208-5
[55]

Guan X, Fei Z, Wang L, Ji G, Du G, et al. 2025. Engineered streaky pork by 3D co-printing and co-differentiation of muscle and fat cells. Food Hydrocolloids 158:110578

doi: 10.1016/j.foodhyd.2024.110578
[56]

David S, Tsukerman A, Safina D, Maor-Shoshani A, Lavon N, Levenberg S. 2023. Co-culture approaches for cultivated meat production. Nature Reviews Bioengineering 1:817−31

doi: 10.1038/s44222-023-00077-x