[1]

Patop IL, Wüst S, Kadener S. 2019. Past, present, and future of circRNAs. The EMBO Journal 38:e100836

doi: 10.15252/embj.2018100836
[2]

Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. 2012. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733

doi: 10.1371/journal.pone.0030733
[3]

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, et al. 2019. The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics 20:675−91

doi: 10.1038/s41576-019-0158-7
[4]

Liu CX, Chen LL. 2022. Circular RNAs: Characterization, cellular roles, and applications. Cell 185:2390

doi: 10.1016/j.cell.2022.06.001
[5]

Chen LL, Bindereif A, Bozzoni I, Chang HY, Matera AG, et al. 2023. A guide to naming eukaryotic circular RNAs. Nature Cell Biology 25:1−5

doi: 10.1038/s41556-022-01066-9
[6]

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, et al. 2013. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141−57

doi: 10.1261/rna.035667.112
[7]

Zhang C, Kang Y, Kong F, Yang Q, Chang D. 2022. Hotspots and development frontiers of circRNA based on bibliometric analysis. Non-coding RNA Research 7:77−88

doi: 10.1016/j.ncrna.2022.03.001
[8]

Xu C, Zhang J. 2021. Mammalian circular RNAs result largely from splicing errors. Cell Reports 36:109439

doi: 10.1016/j.celrep.2021.109439
[9]

Robic A, Cerutti C, Demars J, Kühn C. 2022. From the comparative study of a circRNA originating from an mammalian ATXN2L intron to understanding the genesis of intron lariat-derived circRNAs. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1865:194815

doi: 10.1016/j.bbagrm.2022.194815
[10]

Jin L, Tang Q, Hu S, Chen Z, Zhou X, et al. 2021. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nature Communications 12:3715

doi: 10.1038/s41467-021-23560-8
[11]

Ragan C, Goodall GJ, Shirokikh NE, Preiss T. 2019. Insights into the biogenesis and potential functions of exonic circular RNA. Scientific Reports 9:2048

doi: 10.1038/s41598-018-37037-0
[12]

Robic A, Faraut T, Djebali S, Weikard R, Feve K, et al. 2019. Analysis of pig transcriptomes suggests a global regulation mechanism enabling temporary bursts of circular RNAs. RNA Biology 16:1190−204

doi: 10.1080/15476286.2019.1621621
[13]

Robic A, Hadlich F, Costa Monteiro Moreira G, Louise Clark E, Plastow G, et al. 2024. Innovative construction of the first reliable catalogue of bovine circular RNAs. RNA Biology 21:52−74

doi: 10.1080/15476286.2024.2375090
[14]

Yang L, Wilusz JE, Chen LL. 2022. Biogenesis and Regulatory Roles of Circular RNAs. Annual Review of Cell and Developmental Biology 38:263−89

doi: 10.1146/annurev-cellbio-120420-125117
[15]

Digby B, Finn S, Ó Broin P. 2024. Computational approaches and challenges in the analysis of circRNA data. BMC Genomics 25:527

doi: 10.1186/s12864-024-10420-0
[16]

Rebolledo C, Silva JP, Saavedra N, Maracaja-Coutinho V. 2023. Computational approaches for circRNAs prediction and in silico characterization. Briefings in Bioinformatics 24:bbad154

doi: 10.1093/bib/bbad154
[17]

Srinivasan A, Mroczko-Młotek E, Wojciechowska M. 2025. Circular RNA formation and degradation are not directed by universal pathways. International Journal of Molecular Sciences 26:726

doi: 10.3390/ijms26020726
[18]

Robic A, Kühn C. 2020. Beyond back splicing, a still poorly explored world: non-canonical circular RNAs. Genes 11:1111

doi: 10.3390/genes11091111
[19]

Ares M, Jr., Igel H, Katzman S, Donohue JP. 2024. Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition. Genes & Development 38:322−35

doi: 10.1101/gad.351764.124
[20]

Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, et al. 2022. Best practice standards for circular RNA research. Nature Methods 19:1208−20

doi: 10.1038/s41592-022-01487-2
[21]

Drula R, Braicu C, Berindan-Neagoe I. 2024. Current advances in circular RNA detection and investigation methods: Are we running in circles? WIREs RNA 15:e1850

doi: 10.1002/wrna.1850
[22]

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, et al. 2014. circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell 56:55−66

doi: 10.1016/j.molcel.2014.08.019
[23]

Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, et al. 2015. Exon circularization requires canonical splice signals. Cell Reports 10:103−11

doi: 10.1016/j.celrep.2014.12.002
[24]

Ma XK, Xue W, Chen LL, Yang L. 2021. CIRCexplorer pipelines for circRNA annotation and quantification from non-polyadenylated RNA-seq datasets. Methods 196:3−10

doi: 10.1016/j.ymeth.2021.02.008
[25]

Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, et al. 2016. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Research 26:1277−87

doi: 10.1101/gr.202895.115
[26]

Gao Y, Zhang J, Zhao F. 2018. Circular RNA identification based on multiple seed matching. Briefings in Bioinformatics 19:803−10

doi: 10.1093/bib/bbx014
[27]

Chen L, Wang C, Sun H, Wang J, Liang Y, et al. 2021. The bioinformatics toolbox for circRNA discovery and analysis. Briefings in Bioinformatics 22:1706−28

doi: 10.1093/bib/bbaa001
[28]

Robic A, Cerutti C, Kühn C, Faraut T. 2021. Comparative analysis of the circular transcriptome in muscle, liver and testis in three livestock species. Frontiers in Genetics 12:665153

doi: 10.3389/fgene.2021.665153
[29]

Gao Y, Wang J, Zhao F. 2015. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biology 16:4

doi: 10.1186/s13059-014-0571-3
[30]

Teng J, Gao Y, Yin H, Bai Z, Liu S, et al. 2024. A compendium of genetic regulatory effects across pig tissues. Nature Genetics 56:112−23

doi: 10.1038/s41588-023-01585-7
[31]

Liu S, Gao Y, Canela-Xandri O, Wang S, Yu Y, et al. 2022. A multi-tissue atlas of regulatory variants in cattle. Nature Genetics 54:1438−47

doi: 10.1038/s41588-022-01153-5
[32]

Gruhl F, Janich P, Kaessmann H, Gatfield D. 2021. Circular RNA repertoires are associated with evolutionarily young transposable elements. eLife 10:e67991

doi: 10.7554/eLife.67991
[33]

Hansen TB, Venø MT, Damgaard CK, Kjems J. 2016. Comparison of circular RNA prediction tools. Nucleic Acids Research 44:e58

doi: 10.1093/nar/gkv1458
[34]

Vromman M, Anckaert J, Bortoluzzi S, Buratin A, Chen CY, et al. 2023. Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision. Nature Methods 20:1159−69

doi: 10.1038/s41592-023-01944-6
[35]

Hansen TB. 2018. Improved circRNA identification by combining prediction algorithms. Frontiers in Cell and Developmental Biology 6:20

doi: 10.3389/fcell.2018.00020
[36]

Zeng X, Lin W, Guo M, Zou Q. 2017. A comprehensive overview and evaluation of circular RNA detection tools. Computational Biology 13:e1005420

doi: 10.1371/journal.pcbi.1005420
[37]

Zeng X, Lin W, Guo M, Zou Q. 2019. Details in the evaluation of circular RNA detection tools: Reply to Chen and Chuang. PLoS Computational Biology 15:e1006916

doi: 10.1371/journal.pcbi.1006916
[38]

Chen CY, Chuang TJ. 2019. Comment on "A comprehensive overview and evaluation of circular RNA detection tools". PLoS Computational Biology 15:e1006158

doi: 10.1371/journal.pcbi.1006158
[39]

Chuang TJ, Chiang TW, Chen CY. 2023. Assessing the impacts of various factors on circular RNA reliability. Life Science 6:e202201793

doi: 10.26508/lsa.202201793
[40]

Zhang J, Chen S, Yang J, Zhao F. 2020. Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nature Communications 11:90

doi: 10.1038/s41467-019-13840-9
[41]

Gaffo E, Buratin A, Dal Molin A, Bortoluzzi S. 2022. Sensitive, reliable and robust circRNA detection from RNA-seq with CirComPara2. Briefings in Bioinformatics 23:bbab418

doi: 10.1093/bib/bbab418
[42]

Ayyildiz D, Bergonzoni G, Monziani A, Tripathi T, Döring J, et al. 2023. CAG repeat expansion in the Huntington's disease gene shapes linear and circular RNAs biogenesis. PLoS Genetics 19:e1010988

doi: 10.1371/journal.pgen.1010988
[43]

Chang S, Wang Y, Wang X, Liu H, Zhang T, et al. 2024. HNRNPD regulates the biogenesis of circRNAs and the ratio of mRNAs to circRNAs for a set of genes. RNA Biology 21:834−48

doi: 10.1080/15476286.2024.2386500
[44]

Ma XK, Wang MR, Liu CX, Dong R, Carmichael GG, et al. 2019. CIRCexplorer3: a CLEAR pipeline for direct comparison of circular and linear RNA expression. Genomics Proteomics Bioinformatics 17:511−21

doi: 10.1016/j.gpb.2019.11.004