| [1] |
Lin M, Gao Z, Wang X, Huo H, Mao J, et al. 2024. Eco-friendly managements and molecular mechanisms for improving postharvest quality and extending shelf life of kiwifruit: A review. International Journal of Biological Macromolecules 257:128450 doi: 10.1016/j.ijbiomac.2023.128450 |
| [2] |
Atkinson RG, Gunaseelan K, Wang MY, Luo L, Wang T, et al. 2011. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. Journal of Experimental Botany 62(11):3821−35 doi: 10.1093/jxb/err063 |
| [3] |
Wang H, Wang J, Mujumdar AS, Jin X, Liu Z, et al. 2021. Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa). Food Hydrocolloids 118:106808 doi: 10.1016/j.foodhyd.2021.106808 |
| [4] |
Depuydt S, Hardtke CS. 2011. Hormone signalling crosstalk in plant growth regulation. Current Biology 21(9):R365−R373 doi: 10.1016/j.cub.2011.03.013 |
| [5] |
Chai Z, Fang J, Yao W, Zhao Y, Cheng G, et al. 2022. ScGAIL, a sugarcane N-terminal truncated DELLA-like protein, participates in gibberellin signaling in Arabidopsis. Journal of Experimental Botany 73(11):3462−76 doi: 10.1093/jxb/erac056 |
| [6] |
Zhou M, Li Y, Cheng Z, Zheng X, Cai C, et al. 2023. Important factors controlling gibberellin homeostasis in plant height regulation. Journal of Agricultural and Food Chemistry 71:15895−907 doi: 10.1021/acs.jafc.3c03560 |
| [7] |
Xie Y, Chen L. 2020. Epigenetic regulation of gibberellin metabolism and signaling. Plant & Cell Physiology 61(11):1912−18 doi: 10.1093/pcp/pcaa101 |
| [8] |
Liu CS, Xiao PS, Jiang F, Wang SY, Liu Z, et al. 2022. Exogenous gibberellin treatment improves fruit quality in self-pollinated apple. Plant Physiology and Biochemistry 174:11−21 doi: 10.1016/j.plaphy.2022.01.029 |
| [9] |
Li S, Qiu C, Yang M, Shi L, Cao S, et al. 2023. Effect of gibberellic acid on cell wall degradation and softening in postharvest okras. LWT 186:115223 doi: 10.1016/j.lwt.2023.115223 |
| [10] |
Maurer D, Feygenberg O, Tzoor A, Atzmon G, Glidai S, et al. 2019. Postharvest dips of persimmon fruit in gibberellic acid: an efficient treatment to improve storability and reduce alternaria black spot. Horticulturae 5:23 doi: 10.3390/horticulturae5010023 |
| [11] |
Valero D, Martínez-romero D, Serrano M, Riquelme F. 1998. Postharvest gibberellin and heat treatment effects on polyamines, abscisic acid and firmness in lemons. Journal of Food Science 63(4):611−15 doi: 10.1111/j.1365-2621.1998.tb15796.x |
| [12] |
Porat R, Feng X, Huberman M, Galili D, Goren R, et al. 2001. Gibberellic acid slows postharvest degreening of 'Oroblanco' Citrus fruits. HortScience 36(5):937−40 doi: 10.21273/HORTSCI.36.5.937 |
| [13] |
Li J, Cui M, Li M, Wang X, Liang D, et al. 2015. Expression pattern and promoter analysis of the gene encoding GDP-D-mannose 3′,5′-epimerase under abiotic stresses and applications of hormones by kiwifruit. Scientia Horticulturae 150:187−94 doi: 10.1016/j.scienta.2012.11.008 |
| [14] |
Yang H, Li J, Li X, Wu R, Zhang X, et al. 2023. The mechanism of gibberellins treatment suppressing kiwifruit postharvest ripening processes by transcriptome analysis. Postharvest Biology and Technology 198:112223 doi: 10.1016/j.postharvbio.2022.112223 |
| [15] |
Zhang C, Jian M, Li W, Yao X, Tan C, et al. 2023. Gibberellin signaling modulates flowering via the DELLA-BRAHMA-NF-YC module in Arabidopsis. The Plant Cell 35(9):3470−84 doi: 10.1093/plcell/koad166 |
| [16] |
Silverstone AL, Ciampaglio CN, Sun T. 1998. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. The Plant Cell 10:155−69 doi: 10.1105/tpc.10.2.155 |
| [17] |
Blanco-Touriñán N, Serrano-Mislata A, Alabadí D. 2020. Regulation of DELLA proteins by post-translational modifications. Plant & Cell Physiology 61(11):1891−01 doi: 10.1093/pcp/pcaa113 |
| [18] |
Wild M, Davière JM, Cheminant S, Regnault T, Baumberger N, et al. 2012. The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. The Plant Cell 24:3307−19 doi: 10.1105/tpc.112.101428 |
| [19] |
Wang P, Zhang Q, Chen Y, Zhao Y, Ren F, et al. 2020. Comprehensive identification and analysis of DELLA genes throughout the plant kingdom. BMC Plant Biology 20:372 doi: 10.1186/s12870-020-02574-2 |
| [20] |
Fu X, Harberd NP. 2003. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740−43 doi: 10.1038/nature01387 |
| [21] |
Chen J, Zhang M, Tan B, Jiang Y, Zheng X, et al. 2019. A single nucleotide mutation in GID1c disrupts its interaction with DELLA1 and causes a GA-insensitive dwarf phenotype in peach. Plant Biotechnology Journal 17:1723−35 doi: 10.1111/pbi.13094 |
| [22] |
Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, et al. 2008. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 51:475−79 doi: 10.1038/nature06448 |
| [23] |
Xue H, Gao X, He P, Xiao G. 2022. Origin, evolution, and molecular function of DELLA proteins in plants. The Crop Journal 10:287−99 doi: 10.1016/j.cj.2021.06.005 |
| [24] |
Davière JM, Achard P. 2016. A pivotal role of DELLAs in regulating multiple hormone signals. Molecular plant 9(1):10−20 doi: 10.1016/j.molp.2015.09.011 |
| [25] |
Xie Y, Tan H, Ma Z, Huang J. 2016. DELLA Proteins Promote Anthocyanin Biosynthesis via Sequestering MYBL2 and JAZ Suppressors of the MYB/bHLH/WD40 Complex in Arabidopsis thaliana. Molecular Plant 9:711−21 doi: 10.1016/j.molp.2016.01.014 |
| [26] |
Wang S, Luo C, Sun L, Ning K, Chen Z, et al. 2022. LsRGL1 controls the bolting and flowering times of lettuce by modulating the gibberellin pathway. Plant Science 316:111175 doi: 10.1016/j.plantsci.2021.111175 |
| [27] |
Hu J, Israeli A, Ori N, Sun T. 2018. The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. The Plant Cell 30:1710−28 doi: 10.1105/tpc.18.00363 |
| [28] |
Martí C, Orzáez D, Ellul P, Moreno V, Carbonell J, et al. 2007. Silencing of DELLA induces facultative parthenocarpy in tomato fruits. The Plant Journal 52:865−76 doi: 10.1111/j.1365-313X.2007.03282.x |
| [29] |
Achard P, Vriezen WH, Van Der Straeten D, Harberd NP. 2003. Ethylene regulates arabidopsis development via the modulation of DELLA protein growth repressor function. The Plant Cell 15(12):2816−25 doi: 10.1105/tpc.015685 |
| [30] |
An F, Zhang X, Zhu Z, Ji Y, He W, et al. 2012. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Research 22(5):915−27 doi: 10.1038/cr.2012.29 |
| [31] |
Zhang AD, Wang WQ, Tong Y, Li MJ, Grierson D, et al. 2018. Transcriptome analysis identifies a zinc finger protein regulating starch degradation in kiwifruit. Plant Physiology 178:850−63 doi: 10.1104/pp.18.00427 |
| [32] |
Xiong S, Sun X, Tian M, Xu D, Jiang A. 2023. 1-Methylcyclopropene treatment delays the softening of Actinidia arguta fruit by reducing cell wall degradation and modulating carbohydrate metabolism. Food Chemistry 411:135485 doi: 10.1016/j.foodchem.2023.135485 |
| [33] |
Chen S, Wang X, Zhang L, Lin S, Liu D, et al. 2016. Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit specific SlGA2ox1 overexpression on fruit and seed growth and development. Horticulture Research 3:16059 doi: 10.1038/hortres.2016.59 |
| [34] |
Fukazawa J, Ohashi Y, Takahashi R, Nakai K, Takahashi Y. 2021. DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis. The Plant Cell 33(7):2258−72 doi: 10.1093/plcell/koab102 |
| [35] |
Kuhn N, Maldonado J, Ponce C, Arellano M, Time A, et al. 2021. RNAseq reveals different transcriptomic responses to GA3 in early and midseason varieties before ripening initiation in sweet cherry fruits. Scientific Reports 11:13075 doi: 10.1038/s41598-021-92080-8 |
| [36] |
Erogul D, Sen F. 2016. The effect of preharvest gibberellic acid applications on fruit quality of ' Angelino' plums during storage. Scientia Horticulturae 202:111−16 doi: 10.1016/j.scienta.2016.02.027 |
| [37] |
Dagar A, Weksler A, Friedman H, Lurie S. 2012. Gibberellic acid (GA3) application at the end of pit ripening: Effect on ripening and storage of two harvests of 'September Snow' peach. Scientia Horticulturae 140:125−30 doi: 10.1016/j.scienta.2012.03.013 |
| [38] |
García-Rojas M, Meneses M, Oviedo K, Carrasco C, Defilippi B, et al. 2018. Exogenous gibberellic acid application induces the overexpression of key genes for pedicel lignification and an increase in berry drop in table grape. Plant Physiology and Biochemistry 26:32−38 doi: 10.1016/j.plaphy.2018.02.009 |
| [39] |
Al-Qurashi AD, Awad MA. 2019. Postharvest gibberellic acid, 6-benzylaminopurine and calcium chloride dipping affect quality, antioxidant compounds, radical scavenging capacity and enzymes activities of ' Grand Nain' bananas during shelf life. Scientia Horticulturae 253:187−94 doi: 10.1016/j.scienta.2019.04.044 |
| [40] |
Wu M, Liu K, Li H, Li Y, Zhu Y, et al. 2024. Gibberellins involved in fruit ripening and softening by mediating multiple hormonal signals in tomato. Horticulture Research 11:uhad27 doi: 10.1093/hr/uhad275 |
| [41] |
Li XJ, Cai ZH, Liu XL, Wu YS, Han Z, et al. 2024. Effects of gibberellic acid on soluble sugar content, organic acid composition, endogenous hormone levels, and carbon sink strength in Shine Muscat grapes during berry development stage. Horticulturae 10(4):346 doi: 10.3390/horticulturae10040346 |
| [42] |
Ariizumi T, Lawrence PK, Steber CM. 2011. The role of two F-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. Plant physiology 155(2):765−75 doi: 10.1104/pp.110.166272 |
| [43] |
Li S, Zhao Y, Zhao Z, Wu X, Sun L, et al. 2016. Crystal structure of the GRAS domain of SCARECROW-LIKE7 in Oryza sativa. The Plant Cell 28(5):1025−34 doi: 10.1105/tpc.16.00018 |
| [44] |
Cenci A, Rouard M. 2017. Evolutionary analyses of GRAS transcription factors in angiosperms. Frontiers in Plant Science 8:273 doi: 10.3389/fpls.2017.00273 |
| [45] |
Jin Y, Liu H, Luo D, Yu N, Dong W, et al. 2016. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature communications 7:12433 doi: 10.1038/ncomms12433 |
| [46] |
Serrano-Mislata A, Bencivenga S, Bush M, Schiessl K, Boden S, et al. 2017. DELLA genes restrict inflorescence meristem function independently of plant height. Nature plants 3(9):749−54 doi: 10.1038/s41477-017-0003-y |
| [47] |
Harberd NP, Belfield E, Yasumura Y. 2009. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. The Plant Cell 21:1328−39 doi: 10.1105/tpc.109.066969 |
| [48] |
Shohat H, Illouz-Eliaz N, Kanno Y, Seo M, Weiss D. 2020. The tomato DELLA protein PROCERA promotes abscisic acid responses in guard cells by upregulating an abscisic acid transporter. Plant Physiology 184:518−28 doi: 10.1101/2020.04.22.056010 |
| [49] |
Dolgikh AV, Kirienko AN, Tikhonovich IA, Foo E, Dolgikh EA. 2019. The DELLA proteins influence the expression of cytokinin biosynthesis and response genes during nodulation. Frontiers in Plant Science 10:432 doi: 10.3389/fpls.2019.00432 |