| [1] |
Xian L, Sahu SK, Huang L, Fan Y, Lin J, et al. 2022. The draft genome and multi-omics analyses reveal new insights into geo-herbalism properties of Citrus grandis 'Tomentosa'. Plant Science 325:111489 doi: 10.1016/j.plantsci.2022.111489 |
| [2] |
Li PL, Liu MH, Hu JH, Su WW. 2014. Systematic chemical profiling of Citrus grandis 'Tomentosa' by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 90:167−79 doi: 10.1016/j.jpba.2013.11.030 |
| [3] |
Fan R, Zhu C, Qiu D, Zeng J. 2019. Comparison of the bioactive chemical components and antioxidant activities in three tissues of six varieties of Citrus grandis 'Tomentosa' fruits. International Journal of Food Properties 22(1):1848−62 doi: 10.1080/10942912.2019.1683027 |
| [4] |
Huang X, Liu X, Wang Q, Zhou Y, Deng S, et al. 2024. Transcriptomic and targeted metabolome analyses revealed the regulatory mechanisms of the synthesis of bioactive compounds in Citrus grandis 'Tomentosa'. Peer J 12:e16881 doi: 10.7717/peerj.16881 |
| [5] |
Rong N, Huang L, Ye P, Pan H, Hu M, et al. 2024. CgLS mediates limonene synthesis of main essential oil component in secretory cavity cells of Citrus grandis 'Tomentosa' fruits. International Journal of Biological Macromolecules 280:135671 doi: 10.1016/j.ijbiomac.2024.135671 |
| [6] |
Jiang K, Song Q, Wang L, Xie T, Wu X, et al. 2014. Antitussive, expectorant and anti-inflammatory activities of different extracts from Exocarpium Citri grandis. Journal of Ethnopharmacology 156:97−101 doi: 10.1016/j.jep.2014.08.030 |
| [7] |
Jiao HY, Su WW, Li PB, Liao Y, Zhou Q, et al. 2015. Therapeutic effects of naringin in a guinea pig model of ovalbumin-induced cough-variant asthma. Pulmonary Pharmacology & Therapeutics 33:59−65 doi: 10.1016/j.pupt.2015.07.002 |
| [8] |
Ang L, Lee HW, Choi JY, Zhang J, Lee MS. 2020. Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines. Integrative Medicine Research 9(2):100407 doi: 10.1016/j.imr.2020.100407 |
| [9] |
Su W, Wang Y, Li P, Wu H, Zeng X, et al. 2020. The potential application of the traditional Chinese herb Exocarpium Citri grandis in the prevention and treatment of COVID-19. Traditional Medicine Research 5:160−66 doi: 10.53388/tmr20200406172 |
| [10] |
Jang SE, Ryu KR, Park SH, Chung S, Teruya Y, et al. 2013. Nobiletin and tangeretin ameliorate scratching behavior in mice by inhibiting the action of histamine and the activation of NF-κb, AP-1 and P38. International Immunopharmacology 17(3):502−7 doi: 10.1016/j.intimp.2013.07.012 |
| [11] |
Peng Y, Hu M, Lu Q, Tian Y, He W, et al. 2019. Flavonoids derived from Exocarpium Citri Grandis inhibit LPS-induced inflammatory response via suppressing MAPK and NF-κB signalling pathways. Food and Agricultural Immunology 30(1):564−80 doi: 10.1080/09540105.2018.1550056 |
| [12] |
Fang J, Cao Z, Song X, Zhang X, Mai B, et al. 2020. Rhoifolin alleviates inflammation of acute inflammation animal models and LPS-induced RAW264.7 cells via IKKβ/NF-κB signaling pathway. Inflammation 43(6):2191−210 doi: 10.1007/s10753-020-01286-x |
| [13] |
Duan L, Guo L, Dou LL, Yu KY, Liu EH, et al. 2014. Comparison of chemical profiling and antioxidant activities of fruits, leaves, branches, and flowers of Citrus grandis 'Tomentosa'. Journal of Agricultural and Food Chemistry 62(46):11122−29 doi: 10.1021/jf5036355 |
| [14] |
Zhang M, Nan H, Wang Y, Jiang X, Li Z. 2014. Comparison of flavonoid compounds in the flavedo and juice of two pummelo cultivars (Citrus grandis (L.) Osbeck) from different cultivation regions in China. Molecules 19(11):17314−28 doi: 10.3390/molecules191117314 |
| [15] |
Ou MC, Liu YH, Sun YW, Chan CF. 2015. The composition, antioxidant and antibacterial activities of cold-pressed and distilled essential oils of Citrus paradisi and Citrus grandis (L.) Osbeck. Evidence-based Complementary and Alternative Medicine: eCAM 2015:804091 doi: 10.1155/2015/804091 |
| [16] |
Wang F, Chen L, Chen H, Chen S, Liu Y. 2019. Analysis of flavonoid metabolites in citrus peels (Citrus reticulata "Dahongpao") using UPLC-ESI-MS/MS. Molecules 24(15):2680 doi: 10.3390/molecules24152680 |
| [17] |
Guo L, Yao H, Chen W, Wang X, Ye P, et al. 2022. Natural products of medicinal plants: biosynthesis and bioengineering in post-genomic era. Horticulture Research 9:uhac223 doi: 10.1093/hr/uhac223 |
| [18] |
Su J, Wang Y, Bai M, Peng T, Li H, et al. 2023. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata 'Chachi'. Microbiome 11:61 doi: 10.1186/s40168-023-01504-2 |
| [19] |
Wen J, Wang Y, Lu X, Pan H, Jin D, et al. 2024. An integrated multi-omics approach reveals polymethoxylated flavonoid biosynthesis in Citrus reticulata cv. Chachiensis. Nature Communications 15:3991 doi: 10.1038/s41467-024-48235-y |
| [20] |
Yu F, Xu X, Lin S, Peng T, Zeng . 2022. Integrated metabolomics and transcriptomics reveal flavonoids glycosylation difference in two Citrus peels. Scientia Horticulturae 292:110623 doi: 10.1016/j.scienta.2021.110623 |
| [21] |
Fan R, Zhu C, Qiu D, Mao G, Mueller-Roeber B, et al. 2023. Integrated transcriptomic and metabolomic analyses reveal key genes controlling flavonoid biosynthesis in Citrus grandis 'Tomentosa' fruits. Plant Physiology and Biochemistry 196:210−21 doi: 10.1016/j.plaphy.2023.01.050 |
| [22] |
Fan R, Qiu D, Mao G, Zeng J. 2024. Combined analysis of GC-MS, RNA-seq and ATAC-seq elucidates the essential oils variation and terpenes biosynthesis in Citrus grandis 'Tomentosa'. Industrial Crops and Products 209:117996 doi: 10.1016/j.indcrop.2023.117996 |
| [23] |
Wan H, Liu Y, Wang T, Jiang P, Wen W, et al. 2023. Combined transcriptomic and metabolomic analyses identifies CsERF003, a citrus ERF transcription factor, as flavonoid activator. Plant Science 334:111762 doi: 10.1016/j.plantsci.2023.111762 |
| [24] |
Zheng W, Zhang W, Liu D, Yin M, Wang X, et al. 2023. Evolution-guided multiomics provide insights into the strengthening of bioactive flavone biosynthesis in medicinal pummelo. Plant Biotechnology Journal 21(8):1577−89 doi: 10.1111/pbi.14058 |
| [25] |
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884−i890 doi: 10.1093/bioinformatics/bty560 |
| [26] |
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT genotype. Nature Biotechnology 37(8):907−15 doi: 10.1038/s41587-019-0201-4 |
| [27] |
Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, et al. 2019. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biology 20(1):1−13 doi: 10.1186/s13059-018-1612-0 |
| [28] |
Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology 11(10):R106 doi: 10.1186/gb-2010-11-10-r106 |
| [29] |
Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(1):559 doi: 10.1186/1471-2105-9-559 |
| [30] |
Xu JJ, Wu X, Li MM, Li GQ, Yang YT, et al. 2014. Antiviral activity of polymethoxylated flavones from "Guangchenpi", the edible and medicinal pericarps of Citrus reticulata 'chachi'. Journal of Agricultural and Food Chemistry 62(10):2182−89 doi: 10.1021/jf404310y |
| [31] |
Benavente-García O, Castillo J. 2008. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. Journal of Agricultural and Food Chemistry 56(15):6185−6205 doi: 10.1021/jf8006568 |
| [32] |
Saito T, Abe D, Nogata Y. 2015. Polymethoxylated flavones potentiate the cytolytic activity of NK leukemia cell line KHYG-1 via enhanced expression of granzyme B. Biochemical and Biophysical Research Communications 456(3):799−803 doi: 10.1016/j.bbrc.2014.12.027 |
| [33] |
Guo J, Tao H, Cao Y, Ho CT, Jin S, et al. 2016. Prevention of obesity and type 2 diabetes with aged Citrus peel (Chenpi) extract. Journal of Agricultural and Food Chemistry 64(10):2053−61 doi: 10.1021/acs.jafc.5b06157 |
| [34] |
Gao S, Li P, Yang H, Fang S, Su W. 2011. Antitussive effect of naringin on experimentally induced cough in guinea pigs. Planta Medica 77(1):16−21 doi: 10.1055/s-0030-1250117 |
| [35] |
Luo YL, Zhang CC, Li PB, Nie YC, Wu H, et al. 2012. Naringin attenuates enhanced cough, airway hyperresponsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke. International Immunopharmacology 13(3):301−7 doi: 10.1016/j.intimp.2012.04.019 |
| [36] |
Lin BQ, Li PB, Wang YG, Peng W, Wu Z, et al. 2008. The expectorant activity of naringenin. Pulmonary Pharmacology & Therapeutics 21(2):259−63 doi: 10.1016/j.pupt.2007.05.001 |
| [37] |
Nie YC, Wu H, Li PB, Xie LM, Luo YL, et al. 2012. Naringin attenuates EGF-induced MUC5AC secretion in A549 cells by suppressing the cooperative activities of MAPKs-AP-1 and IKKs-IκB-NF-κB signaling pathways. European Journal of Pharmacology 690(1-3):207−13 doi: 10.1016/j.ejphar.2012.06.040 |
| [38] |
Chen Y, Wu H, Nie YC, Li PB, Shen JG, et al. 2014. Mucoactive effects of naringin in lipopolysaccharide-induced acute lung injury mice and beagle dogs. Environmental Toxicology and Pharmacology 38(1):279−87 doi: 10.1016/j.etap.2014.04.030 |
| [39] |
Jumah Masoud Mohammad S, Zhang XP, Joe Antony J, Chen BA. 2017. Apigenin's anticancer properties and molecular mechanisms of action: Recent advances and future prospectives. Chinese Journal of Natural Medicines 15(5):321−29 doi: 10.1016/S1875-5364(17)30052-3 |
| [40] |
Nabavi SF, Khan H, D’Onofrio G, Dunja Š, Shirooie S, et al. 2018. Apigenin as neuroprotective agent: Of mice and men. Pharmacological Research 128:359−65 doi: 10.1016/j.phrs.2017.10.008 |
| [41] |
Osonga FJ, Akgul A, Miller RM, Eshun GB, Yazgan I, et al. 2019. Antimicrobial activity of a new class of phosphorylated and modified flavonoids. ACS Omega 4(7):12865−71 doi: 10.1021/acsomega.9b00077 |
| [42] |
Chen P, Huo X, Liu W, Li K, Sun Z, et al. 2020. Apigenin exhibits anti-inflammatory effects in LPS-stimulated BV2 microglia through activating GSK3β/Nrf2 signaling pathway. Immunopharmacology and Immunotoxicology 42(1):9−16 doi: 10.1080/08923973.2019.1688345 |
| [43] |
Kashyap P, Shikha D, Thakur M, Aneja A. 2021. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: a review. Journal of food biochemistry 46(4):e13950 doi: 10.1111/jfbc.13950 |
| [44] |
Thomas SD, Jha NK, Jha SK, Sadek B, Ojha S. 2023. Pharmacological and molecular insight on the cardioprotective role of apigenin. Nutrients 15(2):385 doi: 10.3390/nu15020385 |
| [45] |
Shi MD, Liao YC, Shih YW, Tsai LY. 2013. Nobiletin attenuates metastasis via both ERK and PI3K/Akt pathways in HGF-treated liver cancer HepG2 cells. Phytomedicine 20(8-9):743−52 doi: 10.1016/j.phymed.2013.02.004 |
| [46] |
Li S, Wang H, Guo L, Zhao H, Ho CT. 2014. Chemistry and bioactivity of nobiletin and its metabolites. Journal of Functional Foods 6:2−10 doi: 10.1016/j.jff.2013.12.011 |
| [47] |
Rong X, Xu J, Jiang Y, Li F, Chen Y, et al. 2021. Citrus peel flavonoid nobiletin alleviates lipopolysaccharide-induced inflammation by activating IL-6/STAT3/FOXO3a-mediated autophagy. Food & function 12(3):1305−17 doi: 10.1039/d0fo02141e |
| [48] |
Sunagawa Y, Funamoto M, Suzuki A, Shimizu K, Sakurai R, et al. 2017. A novel target molecule of nobiletin derived from Citrus peels has a therapeutic potency against the development of heart failure. European cardiology 12(2):105 doi: 10.15420/ecr.2017:23:14 |
| [49] |
Zhang X, Han L, Liu J, Xu Q, Guo Y, et al. 2018. Pharmacokinetic study of 7 compounds following oral administration of fructus aurantii to depressive rats. Frontiers in Pharmacology 9:131 doi: 10.3389/fphar.2018.00131 |
| [50] |
Tao Y, Yu Q, Huang Y, Liu R, Zhang X, et al. 2022. Identification of crucial polymethoxyflavones tangeretin and 3,5,6,7,8,3′,4′-heptamethoxyflavone and evaluation of their contribution to anticancer effects of Pericarpium Citri reticulatae 'Chachi' during storage. Antioxidants 11(10):1922 doi: 10.3390/antiox11101922 |
| [51] |
Wang J, Li G, Li C, Zhang C, Cui L, et al. 2021. NF-Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato. New Phytologist 229:3237−52 doi: 10.1111/nph.17112 |
| [52] |
Dong NQ, Lin HX. 2021. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology 63:180−209 doi: 10.1111/jipb.13054 |
| [53] |
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, et al. 2011. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany 62(8):2465−83 doi: 10.1093/jxb/erq442 |
| [54] |
Xing A, Wang X, Nazir MF, Zhang X, Wang X, et al. 2022. Transcriptomic and metabolomic profiling of flavonoid biosynthesis provides novel insights into petals coloration in Asian cotton (Gossypium arboreum L.). BMC Plant Biology 22:416 doi: 10.1186/s12870-022-03800-9 |
| [55] |
Nabavi SM, Dunja Š, Tomczyk M, Milella L, Russo D, et al. 2020. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnology Advances 38:107316 doi: 10.1016/j.biotechadv.2018.11.005 |
| [56] |
Zhao T, Li R, Yao W, Wang Y, Zhang C, et al. 2021. Genome-wide identification and characterisation of phenylalanine ammonia-lyase gene family in grapevine. The Journal of Horticultural Science and Biotechnology 96(4):456−68 doi: 10.1080/14620316.2021.1879685 |
| [57] |
Barros J, Dixon RA. 2020. Plant phenylalanine/tyrosine ammonia-lyases. Trends in Plant Science 25:66−79 doi: 10.1016/j.tplants.2019.09.011 |
| [58] |
Cheng GW, Breen PJ. 1991. Activity of Phenylalanine Ammonia-Lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science jashs 116:865−69 doi: 10.21273/JASHS.116.5.865 |
| [59] |
Lu C, Yan X, Zhang H, Zhong T, Gui A, et al. 2024. Integrated metabolomic and transcriptomic analysis reveals biosynthesis mechanism of flavone and caffeoylquinic acid in chrysanthemum. BMC Genomics 25:759 doi: 10.1186/s12864-024-10676-6 |
| [60] |
Li Y, Kim JI, Pysh L, Chapple C. 2015. Four isoforms of arabidopsis 4-coumarate: CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiology 169:2409−21 doi: 10.1104/pp.15.00838 |
| [61] |
Pietrowska-Borek M, Chadzinikolau T, Kozłowska M. 2010. Effect of urban pollution on 4-coumarate: CoA ligase and flavonoid accumulation in Berberis thunbergii. Dendrobiology 64:79−85 |
| [62] |
Deng X, Bashandy H, Ainasoja M, Kontturi J, Pietiäinen M, et al. 2014. Functional diversification of duplicated chalcone synthase genes in anthocyanin biosynthesis of Gerbera hybrida. New Phytologist 201:1469−83 doi: 10.1111/nph.12610 |
| [63] |
Yin YC, Zhang XD, Gao ZQ, Hu T, Liu Y. 2019. The research progress of chalcone isomerase (CHI) in plants. Molecular Biotechnology 61:32−52 doi: 10.1007/s12033-018-0130-3 |
| [64] |
Schijlen EGWM, de Vos CH, Martens S, Jonker HH, Rosin FM, et al. 2007. RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiology 144:1520−30 doi: 10.1104/pp.107.100305 |
| [65] |
Jiang W, Yin Q, Wu R, Zheng G, Liu J, et al. 2015. Role of a chalcone isomerase-like protein in flavonoid biosynthesis in Arabidopsis thaliana. Journal of Experimental Botany 66:7165−7179 doi: 10.1093/jxb/erv413 |
| [66] |
Zhu J, Zhao W, Li R, Guo D, Li H, et al. 2021. Identification and characterization of chalcone isomerase genes involved in flavonoid production in Dracaena cambodiana. Frontiers in Plant Science 12:616396 doi: 10.3389/fpls.2021.616396 |
| [67] |
Li H, Lv Q, Ma C, Qu J, Cai F, et al. 2019. Metabolite profiling and transcriptome analyses provide insights into the flavonoid biosynthesis in the developing seed of tartary buckwheat (Fagopyrum tataricum). Journal of Agricultural and Food Chemistry (40): 11262-76 |
| [68] |
Weber B, Hartmann B, Stöckigt D, Schreiber K, Roloff M, et al. 2006. Liquid chromatography mass spectrometry and liquid chromatography/nuclear magnetic resonance as complementary analytical techniques for unambiguous identification of polymethoxylated flavones in residues from molecular distillation of orange peel oils (Citrus sinensis). Journal of Agricultural and Food Chemistry 54(2):274−78 doi: 10.1021/jf051606f |
| [69] |
Saini RK, Ranjit A, Sharma K, Prasad P, Shang X, et al. 2022. Bioactive compounds of Citrus fruits: a review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants 11(2):239 doi: 10.3390/antiox11020239 |
| [70] |
Liao Z, Liu X, Zheng J, Zhao C, Wang D, et al. 2023. A multifunctional true caffeoyl coenzyme A O-methyltransferase enzyme participates in the biosynthesis of polymethoxylated flavones in citrus. Plant Physiology 192(3):2049−66 doi: 10.1093/plphys/kiad249 |
| [71] |
Alseekh S, Perez de Souza L, Benina M, Fernie AR. 2020. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry 174:112347 doi: 10.1016/j.phytochem.2020.112347 |
| [72] |
Liu Y, Fernie AR, Tohge T. 2022. Diversification of chemical structures of methoxylated flavonoids and genes encoding flavonoid-O-methyltransferases. Plants 11:564 doi: 10.3390/plants11040564 |
| [73] |
Zohra FT, Takematsu S, Yuri I, Nobuhiro K. 2020. Accumulation of polymethoxyflavones and O-methyltransferase gene expression in various citrus cultivars. Horticulture Journal 89:225−36 doi: 10.2503/hortj.UTD-146 |
| [74] |
Berim A, Gang DR. 2016. Methoxylated flavones: occurrence, importance, biosynthesis. Phytochemistry Reviews 15:363−90 doi: 10.1007/s11101-015-9426-0 |