[1]

Sands DC, Morris CE, Dratz EA, Pilgeram AL. 2009. Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods. Plant Science 177:377−89

doi: 10.1016/j.plantsci.2009.07.011
[2]

Tian S, Chen Z, Wei Y. 2018. Measurement of colour-grained wheat nutrient compounds and the application of combination technology in dough. Journal of Cereal Science 83:63−67

doi: 10.1016/j.jcs.2018.07.018
[3]

Kumari A, Sharma S, Sharma N, Chunduri V, Kapoor P, et al. 2020. Influence of biofortified colored wheats (purple, blue, black) on physicochemical, antioxidant and sensory characteristics of chapatti (Indian flatbread). Molecules 25:5071

doi: 10.3390/molecules25215071
[4]

Zhu F. 2018. Anthocyanins in cereals: composition and health effects. Food Research International 109:232−49

doi: 10.1016/j.foodres.2018.04.015
[5]

Wen K, Fang X, Yang J, Yao Y, Nandakumar KS, et al. 2021. Recent research on flavonoids and their biomedical applications. Current Medicinal Chemistry 28:1042−66

doi: 10.2174/0929867327666200713184138
[6]

Xiao J, Capanoglu E, Jassbi AR, Miron A. 2016. Advance on the flavonoid C-glycosides and health benefits. Critical Reviews in Food Science and Nutrition 56:S29−S45

doi: 10.1080/10408398.2015.1067595
[7]

Li X, Qian X, Lǚ X, Wang X, Ji N, et al. 2018. Upregulated structural and regulatory genes involved in anthocyanin biosynthesis for coloration of purple grains during the middle and late grain-filling stages. Plant Physiology and Biochemistry 130:235−47

doi: 10.1016/j.plaphy.2018.07.011
[8]

Wang X, Zhang X, Hou H, Ma X, Sun S, et al. 2020. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Research International 138:109711

doi: 10.1016/j.foodres.2020.109711
[9]

Cerletti C, De Curtis A, Bracone F, Digesù C, Morganti AG, et al. 2017. Dietary anthocyanins and health: data from FLORA and ATHENA EU projects. British Journal of Clinical Pharmacology 83:103−06

doi: 10.1111/bcp.12943
[10]

Khoo HE, Azlan A, Tang ST, Lim SM. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61(1):1361779

doi: 10.1080/16546628.2017.1361779
[11]

Gupta R, Meghwal M, Prabhakar PK. 2021. Bioactive compounds of pigmented wheat (Triticum aestivum): potential benefits in human health. Trends in Food Science & Technology 110:240−52

doi: 10.1016/j.jpgs.2021.02.003
[12]

Balyan HS, Gupta PK, Kumar S, Dhariwal R, Jaiswal V, et al. 2013. Genetic improvement of grain protein content and other health-related constituents of wheat grain. Plant Breeding 132:446−57

doi: 10.1111/pbr.12047
[13]

Hanna M, Jaqua E, Nguyen V, Clay J. 2022. B Vitamins: functions and uses in medicine. The Permanente Journal 26:89−97

doi: 10.7812/TPP/21.204
[14]

Lachman J, Hejtmánková A, Orsák M, Popov M, Martinek P. 2018. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley. Food Chemistry 240:725−35

doi: 10.1016/j.foodchem.2017.07.123
[15]

Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, et al. 2022. Essential metals in health and disease. Chemico-Biological Interactions 367:110173

doi: 10.1016/j.cbi.2022.110173
[16]

Sushree Shyamli P, Rana S, Suranjika S, Muthamilarasan M, Parida A, et al. 2021. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. Theoretical and Applied Genetics 134:3147−65

doi: 10.1007/s00122-021-03878-z
[17]

Zhang S, Ghatak A, Bazargani MM, Bajaj P, Varshney RK, et al. 2021. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. The Plant Journal 107:669−87

doi: 10.1111/tpj.15410
[18]

Ma B, Zhang L, He Z. 2023. Understanding the regulation of cereal grain filling: the way forward. Journal of Integrative Plant Biology 65:526−47

doi: 10.1111/jipb.13456
[19]

Shao Y, Xu F, Sun X, Bao J, Beta T. 2014. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chemistry 143:90−96

doi: 10.1016/j.foodchem.2013.07.042
[20]

Ma D, Li Y, Zhang J, Wang C, Qin H, et al. 2016. Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis-related genes in developing grains of white, purple, and red wheat. Frontiers in Plant Science 7:528

doi: 10.3389/fpls.2016.00528
[21]

Santos MCB, da Silva Lima LR, Nascimento FR, do Nascimento TP, Cameron LC, et al. 2019. Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development. Food Research International 124:118−28

doi: 10.1016/j.foodres.2018.08.034
[22]

Xu C, Abbas HMK, Zhan C, Huang Y, Huang S, et al. 2022. Integrative metabolomic and transcriptomic analyses reveal the mechanisms of Tibetan hulless barley grain coloration. Frontiers in Plant Science 13:1038625

doi: 10.3389/fpls.2022.1038625
[23]

Ren Z, Kopittke PM, Zhao F, Wang P. 2023. Nutrient accumulation and transcriptome patterns during grain development in rice. Journal of Experimental Botany 74:909−30

doi: 10.1093/jxb/erac426
[24]

Shi GL, Li DJ, Wang YF, Liu CH, Hu ZB, et al. 2019. Accumulation and distribution of arsenic and cadmium in winter wheat (Triticum aestivum L.) at different developmental stages. Science of The Total Environment 667:532−39

doi: 10.1016/j.scitotenv.2019.02.394
[25]

Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54:733−49

doi: 10.1111/j.1365-313X.2008.03447.x
[26]

Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53:814−27

doi: 10.1111/j.1365-313X.2007.03373.x
[27]

Jiang W, Liu T, Nan W, Jeewani DC, Niu Y, et al. 2018. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. Journal of Experimental Botany 69:2555−67

doi: 10.1093/jxb/ery101
[28]

Li L, Kong Z, Huan X, Liu Y, Liu Y, et al. 2021. Transcriptomics integrated with widely targeted metabolomics reveals the mechanism underlying grain color formation in wheat at the grain-filling stage. Frontiers in Plant Science 12:757750

doi: 10.3389/fpls.2021.757750
[29]

Wang F, Ji G, Xu Z, Feng B, Zhou Q, et al. 2021. Metabolomics and transcriptomics provide insights into anthocyanin biosynthesis in the developing grains of purple wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry 69:11171−84

doi: 10.1021/acs.jafc.1c01719
[30]

Zhang S, Sun F, Zhang C, Zhang M, Wang W, et al. 2022. Anthocyanin biosynthesis and a regulatory network of different-colored wheat grains revealed by multiomics analysis. Journal of Agricultural and Food Chemistry 70:887−900

doi: 10.1021/acs.jafc.1c05029
[31]

Chen W, Gong L, Guo Z, Wang W, Zhang H, et al. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular Plant 6:1769−80

doi: 10.1093/mp/sst080
[32]

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods 14:417−19

doi: 10.1038/nmeth.4197
[33]

Soneson C, Love MI, Robinson MD. 2015. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4:1521

doi: 10.12688/f1000research.7563.1
[34]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[35]

Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology 16:284−87

doi: 10.1089/omi.2011.0118
[36]

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research 45:D353−D361

doi: 10.1093/nar/gkw1092
[37]

Yang M, Lu K, Zhao FJ, Xie W, Ramakrishna P, et al. 2018. Genome-wide association studies reveal the genetic basis of ionomic variation in rice. The Plant Cell 30:2720−40

doi: 10.1105/tpc.18.00375
[38]

Suwannasom N, Kao I, Pruß A, Georgieva R, Bäumler H. 2020. Riboflavin: the health benefits of a forgotten natural vitamin. International Journal of Molecular Sciences 21:950

doi: 10.3390/ijms21030950
[39]

Wu G, Lupton JR, Turner ND, Fang YZ, Yang S. 2004. Glutathione metabolism and its implications for health. The Journal of Nutrition 134:489−92

doi: 10.1093/jn/134.3.489
[40]

Mertz ET, Bates LS, Nelson OE. 1964. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279−80

doi: 10.1126/science.145.3629.279
[41]

Kaneko K, Aoyagi Y, Fukuuchi T, Inazawa K, Yamaoka N. 2014. Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia. Biological and Pharmaceutical Bulletin 37:709−21

doi: 10.1248/bpb.b13-00967
[42]

Radchuk VV, Borisjuk L, Sreenivasulu N, Merx K, Mock HP, et al. 2009. Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiology 150:190−204

doi: 10.1104/pp.108.133520
[43]

Liu X, Liu H, Tian B, Shi G, Liu C, et al. 2023. Metabolome and transcriptome analyses of anthocyanin biosynthesis reveal key metabolites and candidate genes in purple wheat (Triticum aestivum L.). Physiologia Plantarum 175:e13921

doi: 10.1111/ppl.13921
[44]

Venkataramani V. 2021. Iron homeostasis and metabolism: two sides of a coin. In Ferroptosis: Mechanism and Diseases, eds Florez AF, Alborzinia H. Cham: Springer. Volume 1301. pp. 25−40. doi: 10.1007/978-3-030-62026-4_3

[45]

Zhen S, Dong K, Deng X, Zhou J, Xu X, et al. 2016. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.). Journal of the Science of Food and Agriculture 96:3731−40

doi: 10.1002/jsfa.7561
[46]

Ma D, Wang C, Feng J, Xu B. 2021. Wheat grain phenolics: a review on composition, bioactivity, and influencing factors. Journal of the Science of Food and Agriculture 101:6167−85

doi: 10.1002/jsfa.11428
[47]

Al-Mahasneh MA, Amer Mmb, Rababah TM. 2012. Modeling moisture sorption isotherms in roasted green wheat using least square regression and neural-fuzzy techniques. Food and Bioproducts Processing 90:165−70

doi: 10.1016/j.fbp.2011.02.007
[48]

Zhang Y, Zhang G. 2019. Starch content and physicochemical properties of green wheat starch. International Journal of Food Properties 22:1463−74

doi: 10.1080/10942912.2019.1651739
[49]

Zhu A, Zhou Q, Hu S, Wang F, Tian Z, et al. 2022. Metabolomic analysis of the grain pearling fractions of six bread wheat varieties. Food Chemistry 369:130881

doi: 10.1016/j.foodchem.2021.130881
[50]

Zhang K, Zhang C, Gao L, Zhuang H, Feng T, et al. 2022. Analysis of volatile flavor compounds of green wheat under different treatments by GC-MS and GC-IMS. Journal of Food Biochemistry 46:e13875

doi: 10.1111/jfbc.13875