| [1] |
Driscoll DA, Armenteras D, Bennett AF, Brotons L, Clarke MF, et al. 2021. How fire interacts with habitat loss and fragmentation. Biological Reviews 96:976−98 doi: 10.1111/brv.12687 |
| [2] |
North MP, STePhens SL, Collins BM, Agee JK, APleT G, et al. 2015. Reform forest fire management. Science 349:1280−81 doi: 10.1126/science.aab2356 |
| [3] |
Li Y, Xiao Y, Yu L, Ji K, Li D. 2022. A review on the tooling technologies for composites manufacturing of aerospace structures: materials, structures and processes. Composites Part A: Applied Science and Manufacturing 154:106762 doi: 10.1016/j.compositesa.2021.106762 |
| [4] |
Minet L, Blum A, Fernández SR, Rodgers KM, Singla V, et al. 2021. High production, low information: we need to know more about polymeric flame retardants. Environmental Science & Technology 55:3467−69 |
| [5] |
Gong M, Zhang L, Wan P. 2020. Polymer nanocomposite meshes for flexible electronic devices. Progress in Polymer Science 107:101279 doi: 10.1016/j.progpolymsci.2020.101279 |
| [6] |
Kodur V, Kumar P, Rafi MM. 2020. Fire hazard in buildings: review, assessment and strategies for improving fire safety. PSU Research Review 4:1−23 doi: 10.1108/prr-12-2018-0033 |
| [7] |
Cao CF, Yu B, Huang J, Feng XL, Lv LY, et al. 2022. Biomimetic, mechanically strong supramolecular nanosystem enabling solvent resistance, reliable fire protection and ultralong fire warning. ACS Nano 16:20865−76 doi: 10.1021/acsnano.2c08368 |
| [8] |
Wu Q, Gong LX, Li Y, Cao CF, Tang LC, et al. 2018. Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings. ACS Nano 121:416−24 doi: 10.1021/acsnano.7b06590 |
| [9] |
Wei W, Yi Y, Song J, Chen X, Li J, et al. 2022. Tunable graphene/nitrocellulose temperature alarm sensors. ACS Applied Materials & Interfaces 14:13790−800 doi: 10.1021/acsami.2c02340 |
| [10] |
Xue B, Yang S, Qin R, Deng S, Niu M, et al. 2022. Effect of a graphene-APP composite aerogel coating on the polyester fabric for outstanding flammability. Progress in Organic Coatings 172:107130 doi: 10.1016/j.porgcoat.2022.107130 |
| [11] |
Cui F. 2020. Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environment. Computer Communications 150:818−27 doi: 10.1016/j.comcom.2019.11.051 |
| [12] |
Robles RJ, Kim TH. 2010. A review on security in smart home development. International Journal of Advanced Science and Technology 15:13−22 |
| [13] |
He H, Qin Y, Zhu Z, Jiang Q, Ouyang S, et al. 2023. Temperature-arousing self-powered fire warning e-textile based on p–n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Letters 15:226 doi: 10.1007/s40820-023-01200-8 |
| [14] |
Dong L, Hu C, Song L, Huang X, Chen N, et al. 2016. A large-area, flexible, and flame-retardant graphene paper. Advanced Functional Materials 26:1470−76 doi: 10.1002/adfm.201504470 |
| [15] |
Lv LY, Cao CF, Qu YX, Zhang GD, Zhao L, et al. 2022. Smart fire-warning materials and sensors: design principle, performances, and applications. Materials Science and Engineering: R: Reports 150:100690 doi: 10.1016/j.mser.2022.100690 |
| [16] |
Ding Z, Du C, Long W, Cao CF, Liang L, et al. 2023. Thermoelectrics and thermocells for fire warning applications. Science Bulletin 68:3261−77 doi: 10.1016/j.scib.2023.08.057 |
| [17] |
Zhang P, Wang Y, Mao C, Mao S, Peng J, et al. 2024. Mechanically flexible graphene oxide network for highly-sensitive and ultra-long fire warning. Chemical Engineering Journal 494:153163 doi: 10.1016/j.cej.2024.153163 |
| [18] |
Zhang Y, Huang Y, Li MC, Zhang S, Zhou W, et al. 2023. Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chemical Engineering Journal 452:139360 doi: 10.1016/j.cej.2022.139360 |
| [19] |
Xia L, Lv Y, Miao Z, Luo L, Luo W, et al. 2022. A flame retardant fabric nanocoating based on nanocarbon black particles@ polymer composite and its fire-alarm application. Chemical Engineering Journal 433:133501 doi: 10.1016/j.cej.2021.133501 |
| [20] |
Zhang M, Wang M, Zhang M, Yang C, Li Y, et al. 2019. Flexible and thermally induced switchable fire alarm fabric based on layer-by-layer self-assembled silver sheet/Fe3O4 nanowire composite. ACS Applied Materials & Interfaces 11:47456−67 |
| [21] |
Li L, Qi P, Sun J, Liu W, Li H, et al. 2022. Improving the fire performance and washing durability of nylon-cotton blend fabrics by the incorporation taurine derivatives. Progress in Organic Coatings 171:107018 doi: 10.1016/j.porgcoat.2022.107018 |
| [22] |
Zhao X, Peng LM, Chen Y, Zha XJ, Li WD, et al. 2021. Phase change mediated mechanically transformative dynamic gel for intelligent control of versatile devices. Materials Horizons 8:1230−41 doi: 10.1039/D0MH02069A |
| [23] |
Jia J, Gao N, Li R, Liao S, Lyu S, et al. 2022. An "OFF-to-ON" shape memory polymer conductor for early fire disaster alarming. Chemical Engineering Journal 431:133285 doi: 10.1016/j.cej.2021.133285 |
| [24] |
Fu T, Zhao X, Chen L, Wu WS, Zhao Q, et al. 2019. Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Advanced Functional Materials 29:1806586 doi: 10.1002/adfm.201806586 |
| [25] |
Xu Y, Huang L, Long J, Zhang R, Zhong Z, et al. 2022. Reversible thermochromic POSS-metal films for early warning. Composites Science and Technology 217:109083 doi: 10.1016/j.compscitech.2021.109083 |
| [26] |
Sun P, Cai N, Zhong X, Zhao X, Zhang L, et al. 2021. Facile monitoring for human motion on fireground by using MiEs-TENG sensor. Nano Energy 89:106492 doi: 10.1016/j.nanoen.2021.106492 |
| [27] |
He W, Song P, Yu B, Fang Z, Wang H. 2020. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Progress in Materials Science 114:100687 doi: 10.1016/j.pmatsci.2020.100687 |
| [28] |
He X, Xu F, Chen FF, Zhu YJ, Yu Y. 2023. Graphene oxide and hydroxyapatite nanowire-based asymmetric nanocomposite papers with Heat-Induced color and resistance switching for dual-mode early fire warning. ACS Applied Nano Materials 6:23390−400 doi: 10.1021/acsanm.3c04723 |
| [29] |
Liu L, Feng J, Xue Y, Chevali V, Zhang Y, et al. 2023. 2D MXenes for fire retardancy and fire-warning applications: promises and prospects. Advanced Functional Materials 33:2212124 doi: 10.1002/adfm.202212124 |
| [30] |
Ma Y, Shi W, Tang K, Li S, Sun J, et al. 2024. Flexible polyimide-based flame-retardant E-textile for fire damage warning in firefighting clothing. Progress in Organic Coatings 192:108517 doi: 10.1016/j.porgcoat.2024.108517 |
| [31] |
Cao CF, Yu B, Chen ZY, Qu YX, Li YT, et al. 2022. Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Letters 14:92 doi: 10.1007/s40820-022-00837-1 |
| [32] |
Zhang Z, Zhou Z, Huang J, Wang Y. 2024. A flame retardant poly vinyl alcohol/graphene oxide/phytic acid composite for a quick response and ultra-long fire alarm. Journal of Materials Chemistry A 12:6050−66 doi: 10.1039/D3TA07522B |
| [33] |
Mao M, Yu KX, Cao CF, Gong LX, Zhang GD, et al. 2022. Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chemical Engineering Journal 427:131615 doi: 10.1016/j.cej.2021.131615 |
| [34] |
Ma T, Zhou Q, Li L, Pan M, Guo C, et al. 2023. Nacre-inspired intumescent flame retardant bridging network for intelligent fire warning and prevention. Chemical Engineering Journal 468:143786 doi: 10.1016/j.cej.2023.143786 |
| [35] |
Xia L, Lin Y, Xue M, Qin R, Du W, et al. 2024. Heterostructured MXene/alginate coating for fire warning and protection: Preparation and characterization. Progress in Organic Coatings 187:108107 doi: 10.1016/j.porgcoat.2023.108107 |
| [36] |
Ma T, Li L, Pan M, Guo C, Mei C. 2023. Multifunctional MXene-based fire alarm wallpaper with sandwich-like structure for enhanced fire safety and prevention. Chemical Engineering Journal 451:138517 doi: 10.1016/j.cej.2022.138517 |
| [37] |
Chen J, Xie H, Lai X, Li H, Gao J, et al. 2020. An ultrasensitive fire-warning chitosan/montmorillonite/carbon nanotube composite aerogel with high fire-resistance. Chemical Engineering Journal 399:125729 doi: 10.1016/j.cej.2020.125729 |
| [38] |
Idumah CI. 2023. Recent advancements in fire retardant mechanisms of carbon nanotubes, graphene, and fullerene polymeric nanoarchitectures. Journal of Analytical and Applied Pyrolysis 174:106113 doi: 10.1016/j.jaap.2023.106113 |
| [39] |
Wang Y, Liu J, Zhao Y, Qin Y, Zhu Z, et al. 2022. Temperature-triggered fire warning PEG@ wood powder/carbon nanotube/calcium alginate composite aerogel and the application for firefighting clothing. Composites Part B: Engineering 247:110348 doi: 10.1016/j.compositesb.2022.110348 |
| [40] |
He X, Feng Y, Xu F, Chen FF, Yu Y. 2022. Smart fire alarm systems for rapid early fire warning: Advances and challenges. Chemical Engineering Journal 450:137927 doi: 10.1016/j.cej.2022.137927 |
| [41] |
Huang GQ, Jin YX, Luo SZ, Fu ZH, Wang GE, et al. 2022. Cascading photoelectric detecting and chemiresistive gas-sensing properties of Pb5S2I6 nanowire mesh for multi-factor accurate fire alarm. Small Methods 6:2200470 doi: 10.1002/smtd.202200470 |
| [42] |
Yi J, Chen W, Han J, Chen D. 2019. Sensitive and selective detection of plasticizer vapors with modified-SnO2 hollow nanofibers for electrical fire warning. Sensors and Actuators B: Chemical 287:364−70 doi: 10.1016/j.snb.2019.02.025 |
| [43] |
Zhang S, Zhang Y, Huang Y, Lin B, Ling S, et al. 2022. Intelligent coating based on metal-insulator transitional Ti3O5 towards fire sensing and protection. Chemical Engineering Journal 450:137910 doi: 10.1016/j.cej.2022.137910 |
| [44] |
Wang Y, Wu R, Liu Y, Yuan B. 2024. Bio-based chitosan/amino trimethylene phosphonic acid films enabling highly-efficient intumescent flame retardancy and ultra-fast fire early-warning function. Colloids and Surfaces A: Physicochemical and Engineering Aspects 684:133095 doi: 10.1016/j.colsurfa.2023.133095 |
| [45] |
Zheng H, Han X, Wei Q, Zheng C, Huang C, et al. 2022. Biomass-based flexible fire warning sensor with excellent flame retardancy and sensitivity. Chemical Engineering Journal 437:135412 doi: 10.1016/j.cej.2022.135412 |
| [46] |
Liu Q, Yang S, Ren J, Ling S. 2020. Flame-retardant and sustainable silk ionotronic skin for fire alarm systems. ACS Materials Letters 2:712−20 doi: 10.1021/acsmaterialslett.0c00062 |
| [47] |
Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, et al. 2008. Observation of the spin Seebeck effect. Nature 455:778−81 doi: 10.1038/nature07321 |
| [48] |
Wu X, Gao N, Zheng X, Tao X, He Y, et al. 2020. Self-Powered and Green Ionic-Type Thermoelectric Paper Chips for Early Fire Alarming. ACS Applied Materials & Interfaces 12:27691−99 doi: 10.1021/acsami.0c04798 |
| [49] |
Li Y, Chen Y, He X, Xiang Z, Heinze T, et al. 2022. Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance. Chemical Engineering Journal 431:133907 doi: 10.1016/j.cej.2021.133907 |
| [50] |
Jiang Q, Wan Y, Qin Y, Qu X, Zhou M, et al. 2024. Durable and Wearable Self-powered Temperature Sensor Based on Self-healing Thermoelectric Fiber by Coaxial Wet Spinning Strategy for Fire Safety of Firefighting Clothing. Advanced Fiber Materials 6:1387−401 doi: 10.1007/s42765-024-00416-6 |
| [51] |
Wang B, Lai X, Li H, Jiang C, Gao J, et al. 2021. Multifunctional MXene/Chitosan-Coated Cotton Fabric for Intelligent Fire Protection. ACS Applied Materials & Interfaces 13:23020−29 doi: 10.1021/acsami.1c05222 |
| [52] |
Zeng Q, Zhao Y, Lai X, Jiang C, Wang B, et al. 2022. Skin-inspired multifunctional MXene/cellulose nanocoating for smart and efficient fire protection. Chemical Engineering Journal 446:136899 doi: 10.1016/j.cej.2022.136899 |
| [53] |
Qin S, Usman KAS, Hegh D, Seyedin S, Gogotsi Y, et al. 2021. Development and applications of MXene-based functional fibers. ACS Applied Materials & Interfaces 13:36655−69 doi: 10.1021/acsami.1c08985 |
| [54] |
Yu B, Yang W, Li J, Xie W, Jin H, et al. 2021. Heat-triggered high-performance thermocells enable a self-powered forest fire alarm. Journal of Materials Chemistry A 9:26119−26 doi: 10.1039/D1TA06793A |
| [55] |
Ahmed A, El-Kady MF, Hassan I, Negm A, Pourrahimi AM, et al. 2019. Fire-retardant, self-extinguishing triboelectric nanogenerators. Nano Energy 59:336−45 doi: 10.1016/j.nanoen.2019.02.026 |
| [56] |
An X, Wang C, Shao R, Sun S. 2021. Advances and prospects of triboelectric nanogenerator for self-powered system. International Journal of Smart and Nano Materials 12:233−55 doi: 10.1080/19475411.2021.1973143 |
| [57] |
He H, Liu J, Wang Y, Zhao Y, Qin Y, et al. 2022. An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16:2953−67 doi: 10.1021/acsnano.1c10144 |
| [58] |
Pang Y, Chen S, An J, Wang K, Deng Y, et al. 2020. Multilayered cylindrical triboelectric nanogenerator to harvest kinetic energy of tree branches for monitoring environment condition and forest fire. Advanced Functional Materials 30:2003598 doi: 10.1002/adfm.202003598 |
| [59] |
Gao X, Xing F, Guo F, Yang Y, Hao Y, et al. 2021. A turbine disk-type triboelectric nanogenerator for wind energy harvesting and self-powered wildfire pre-warning. Materials Today Energy 22:100867 doi: 10.1016/j.mtener.2021.100867 |
| [60] |
Ma Z, Zhang J, Liu L, Zheng H, Dai J, et al. 2022. A highly fire-retardant rigid polyurethane foam capable of fire-warning. Composites Communications 29:101046 doi: 10.1016/j.coco.2021.101046 |
| [61] |
Wang K, Zhang T, Li C, Xiao X, Tang Y, et al. 2022. Shape-reconfigurable transparent wood based on solid-state plasticity of polythiourethane for smart building materials with tunable light guiding, energy saving, and fire alarm actuating functions. Composites Part B: Engineering 246:110260 doi: 10.1016/j.compositesb.2022.110260 |
| [62] |
Chen L, Zhao HB, Ni YP, Fu T, Wu WS, et al. 2019. 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking. Journal of Materials Chemistry A 7:17037−45 doi: 10.1039/C9TA04187G |
| [63] |
Zhang L, Huang Y, Dong H, Xu R, Jiang S. 2021. Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor. Composites Part B: Engineering 223:109149 doi: 10.1016/j.compositesb.2021.109149 |
| [64] |
Griffith JS, Orgel LE. 1957. Ligand-field theory. Quarterly Reviews, Chemical Society 11:381−93 doi: 10.1039/qr9571100381 |
| [65] |
Guo KY, Wu Q, Mao M, Chen H, Zhang GD, et al. 2020. Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Composites Part B-Engineering 193:108017 doi: 10.1016/j.compositesb.2020.108017 |
| [66] |
Huang NJ, Xia QQ, Zhang ZH, Zhao L, Zhang GD, et al. 2020. Simultaneous improvements in fire resistance and alarm response of GO paper via one-step 3-mercaptopropyltrimethoxysilane functionalization for efficient fire safety and prevention. Composites Part A - Applied Science And Manufacturing 131:105797 doi: 10.1016/j.compositesa.2020.105797 |
| [67] |
Cao CF, Liu WJ, Xu H, Yu KX, Gong LX, et al. 2021. Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives. Journal of Materials Science & Technology 85:194−204 doi: 10.1016/j.jmst.2020.12.073 |
| [68] |
Jiang C, Chen J, Lai X, Li H, Zeng X, et al. 2022. Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chemical Engineering Journal 434:134630 doi: 10.1016/j.cej.2022.134630 |
| [69] |
Chen W, Liu P, Liu Y, Wang Q, Duan W. 2018. A temperature-induced conductive coating via layer-by-layer assembly of functionalized graphene oxide and carbon nanotubes for a flexible, adjustable response time flame sensor. Chemical Engineering Journal 353:115−25 doi: 10.1016/j.cej.2018.07.110 |
| [70] |
Chen Z, Chen W, Liu P, Liu Y, Liu Z. 2021. A multifunctional polyurethane sponge based on functionalized graphene oxide and carbon nanotubes for highly sensitive and super durable fire alarming. Composites Part A: Applied Science and Manufacturing 150:106598 doi: 10.1016/j.compositesa.2021.106598 |
| [71] |
Shen YB, Yu KX, Wang YJ, Qu YH, Pan LQ, et al. 2024. Color adjustable, mechanically robust, flame-retardant and weather-resistant TiO2/MMT/CNF hierarchical nanocomposite coatings toward intelligent fire cyclic warning and protection. Composites Part B: Engineering 271:111159 doi: 10.1016/j.compositesb.2023.111159 |
| [72] |
Zhu J, Yang H, Cao L, Dai C, Ren J, et al. 2023. Functionalization of structural materials through electro-blown spinning of ultrathin and transparent silk fibroin ionotronic nanofiber skin. Nano Today 50:101873 doi: 10.1016/j.nantod.2023.101873 |
| [73] |
Wang Y, Chen G, Yang F, Luo Z, Yuan B, et al. 2022. Serendipity discovery of fire early warning function of chitosan film. Carbohydrate Polymers 277:118884 doi: 10.1016/j.carbpol.2021.118884 |
| [74] |
Wang R, Ma J, Ma S, Zhang Q, Li N, et al. 2022. A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chemical Engineering Journal 450:137985 doi: 10.1016/j.cej.2022.137985 |
| [75] |
Liu W, Wang X, Song Y, Cao R, Wang L, et al. 2020. Self-powered forest fire alarm system based on impedance matching effect between triboelectric nanogenerator and thermosensitive sensor. Nano Energy 73:104843 doi: 10.1016/j.nanoen.2020.104843 |
| [76] |
Jia P, Shi Y, Song F, Bei Y, Huang C, et al. 2022. Bio-based and degradable vitrimer-graphene/graphene oxide composites with self-healing ability stimulated by heat, electricity and microwave as temperature and fire warning sensors. Composites Science and Technology 227:109573 doi: 10.1016/j.compscitech.2022.109573 |
| [77] |
Wang J, He J, Ma L, Zhang Y, Shen L, et al. 2020. Multifunctional conductive cellulose fabric with flexibility, superamphiphobicity and flame-retardancy for all-weather wearable smart electronic textiles and high-temperature warning device. Chemical Engineering Journal 390:124508 doi: 10.1016/j.cej.2020.124508 |
| [78] |
Li X, Sánchez del Río Saez J, Ao X, Yusuf A, Wang DY. 2022. Highly-sensitive fire alarm system based on cellulose paper with low-temperature response and wireless signal conversion. Chemical Engineering Journal 431:134108 doi: 10.1016/j.cej.2021.134108 |
| [79] |
Zou T, Zhang D, Xu T, Peng X, Zhang H, et al. 2023. Smart fire-safety cotton fabric with fire-warning capability via dual working mechanisms. Cellulose 30:6015−30 doi: 10.1007/s10570-023-05227-3 |
| [80] |
Kong Y, Fan X, Wu R, Nie S, Liu C, et al. 2024. Multifunctional flame-retardant cotton fabric with hydrophobicity and electrical conductivity for wearable smart textile and self-powered fire-alarm system. Chemical Engineering Journal 487:150677 doi: 10.1016/j.cej.2024.150677 |
| [81] |
Ding Z, Li G, Wang Y, Du C, Ye Z, et al. 2024. Ultrafast response and threshold adjustable intelligent thermoelectric systems for next-generation self-powered remote IoT fire warning. Nano-Micro Letters 16:242 doi: 10.1007/s40820-024-01453-x |
| [82] |
Yu Z, Qu X, Wan Y, Jiang Q, Qin Y, et al. 2024. Robust and ultra-sensitive self-powered fire warning sensor based on polyimide thermoelectric fibers for temperature sensing and intelligent fire safety monitoring. Chemical Engineering Journal 496:154033 doi: 10.1016/j.cej.2024.154033 |
| [83] |
Dampage U, Bandaranayake L, Wanasinghe R, Kottahachchi K, Jayasanka B. 2022. Forest fire detection system using wireless sensor networks and machine learning. Scientific Reports 12:46 doi: 10.1038/s41598-021-03882-9 |
| [84] |
Zhang Y, Geng P, Sivaparthipan CB, Muthu BA. 2021. Big data and artificial intelligence based early risk warning system of fire hazard for smart cities. Sustainable Energy Technologies and Assessments 45:100986 doi: 10.1016/j.seta.2020.100986 |
| [85] |
Sarwar B, Bajwa IS, Ramzan S, Ramzan B, Kausar M. 2018. Design and application of fuzzy logic based fire monitoring and warning systems for smart buildings. Symmetry 10:615 doi: 10.3390/sym10110615 |
| [86] |
Alqourabah H, Muneer A, Fati SM. 2021. A smart fire detection system using IoT technology with automatic water sprinkler. International Journal of Electrical and Computer Engineering 11:2994 doi: 10.11591/ijece.v11i4.pp2994-3002 |
| [87] |
Khan F, Wang S, Ma Z, Ahmed A, Song P, et al. 2021. A durable, flexible, large-area, flame-retardant, early fire warning sensor with built-in patterned electrodes. Small Methods 5:2001040 doi: 10.1002/smtd.202001040 |