| [1] |
Bartley DM. 2022. World Aquaculture 2020 – A brief overview. FAO, Rome, Italy. https://coilink.org/20.500.12592/5v2m8z |
| [2] |
Kobayashi M, Msangi S, Batka M, Vannuccini S, Dey MM, et al. 2015. Fish to 2030: the role and opportunity for aquaculture. Aquaculture Economics & Management 19:282−300 doi: 10.1080/13657305.2015.994240 |
| [3] |
Dhama K, Tiwari R, Chakraborty S, Kumar A, Mathesh K, et al. 2013. Global warming and emerging infectious diseases of animals and humans: current scenario, challenges, solutions and future perspectives – a review. International Journal of Current Research 5:1942−58 |
| [4] |
Dawood MAO, Koshio S, Esteban MÁ. 2018. Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture 10:950−74 doi: 10.1111/raq.12209 |
| [5] |
Santos L, Ramos F. 2018. Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents 52:135−43 doi: 10.1016/j.ijantimicag.2018.03.010 |
| [6] |
Semwal A, Kumar A, Kumar N. 2023. A review on pathogenicity of Aeromonas hydrophila and their mitigation through medicinal herbs in aquaculture. Heliyon 9(3):e14088 doi: 10.1016/j.heliyon.2023.e14088 |
| [7] |
Abasubong KP, Liu WB, Zhang DD, Yuan XY, Xia SL, et al. 2018. Fishmeal replacement by rice protein concentrate with xylooligosaccharides supplement benefits the growth performance, antioxidant capability and immune responses against Aeromonas hydrophila in blunt snout bream (Megalobrama amblycephala). Fish & Shellfish Immunology 78:177−86 doi: 10.1016/j.fsi.2018.04.044 |
| [8] |
Abd-elaziz RA, Shukry M, Abdel-Latif HMR, Saleh RM. 2023. Growth-promoting and immunostimulatory effects of phytobiotics as dietary supplements for Pangasianodon hypophthalmus fingerlings. Fish & Shellfish Immunology 133:108531 doi: 10.1016/j.fsi.2023.108531 |
| [9] |
Hoseinifar SH, Sharifian M, Vesaghi MJ, Khalili M, Esteban MÁ. 2014. The effects of dietary xylooligosaccharide on mucosal parameters, intestinal microbiota and morphology and growth performance of Caspian white fish (Rutilus frisii kutum) fry. Fish & Shellfish Immunology 39:231−36 doi: 10.1016/j.fsi.2014.05.009 |
| [10] |
Guerreiro I, Couto A, Pérez-Jiménez A, Oliva-Teles A, Enes P. 2015. Gut morphology and hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed plant feedstuffs or fishmeal-based diets supplemented with short-chain fructo-oligosaccharides and xylo-oligosaccharides. British Journal of Nutrition 114:1975−84 doi: 10.1017/S0007114515003773 |
| [11] |
Van Doan H, Hoseinifar SH, Tapingkae W, Seel-audom M, Jaturasitha S, et al. 2020. Boosted growth performance, mucosal and serum immunity, and disease resistance Nile Tilapia (Oreochromis niloticus) fingerlings using corncob-derived xylooligosaccharide and Lactobacillus plantarum CR1T5. Probiotics and Antimicrobial Proteins 12:400−11 doi: 10.1007/s12602-019-09554-5 |
| [12] |
Morshedi V, Agh N, Noori F, Jafari F, Tukmechi A, et al. 2018. Effects of dietary xylooligosaccharide on growth and feeding performance, body composition and physiological responses of sobaity seabream (Sparidentex hasta) juvenile. Aquaculture Nutrition 24:1796−803 doi: 10.1111/anu.12818 |
| [13] |
Petersen A. 2010. Effects of selected non-digestible dietary carbohydrates on the composition of the large intestinal microbiota and susceptibility to Salmonella infections. Report. Technical University of Denmark, Denmark. |
| [14] |
Valladares-Diestra KK, de Souza Vandenberghe LP, Vieira S, Goyzueta-Mamani LD, de Mattos PBG, et al. 2023. The potential of xylooligosaccharides as prebiotics and their sustainable production from agro-industrial by-products. Foods 12(14):2681 doi: 10.3390/foods12142681 |
| [15] |
Lin SH, Chou LM, Chien YW, Chang JS, Lin CI. 2016. Prebiotic effects of xylooligosaccharides on the improvement of microbiota balance in human subjects. Gastroenterology Research and Practice 2016:5789232 doi: 10.1155/2016/5789232 |
| [16] |
Aachary AA, Prapulla SG. 2011. Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Comprehensive Reviews in Food Science and Food Safety 10:2−16 doi: 10.1111/j.1541-4337.2010.00135.x |
| [17] |
Abasubong KP, Li XF, Zhang DD, Jia ET, Xiang-Yang Y, et al. 2018. Dietary supplementation of xylooligosaccharides benefits the growth performance and lipid metabolism of common carp (Cyprinus carpio) fed high-fat diets. Aquaculture Nutrition 24:1416−24 doi: 10.1111/anu.12678 |
| [18] |
Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Merrifield DL, Ringø E. 2017. In vitro selection of a synbiotic and in vivo evaluation on intestinal microbiota, performance and physiological response of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquaculture Nutrition 23:111−18 doi: 10.1111/anu.12373 |
| [19] |
Hua K, Cobcroft JM, Cole A, Condon K, Jerry DR, et al. 2019. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1:316−29 doi: 10.1016/j.oneear.2019.10.018 |
| [20] |
Zhang ZH, Chen M, Xie SW, Chen XQ, Liu YJ, et al. 2020. Effects of dietary xylooligosaccharide on growth performance, enzyme activity and immunity of juvenile grass carp, Ctenopharyngodon idellus. Aquaculture Reports 18:100519 doi: 10.1016/j.aqrep.2020.100519 |
| [21] |
Guan Y, Zhou H, Wang Z. 2011. Effects of xylooligosaccharide on growth performance, activities of digestive enzymes, and intestinal microflora of juvenile Pelodiscus sinensis. Frontiers of Agriculture in China 5:612−17 doi: 10.1007/s11703-011-1129-8 |
| [22] |
Abasubong KP, Liu WB, Adjoumani YJJ, Xia SL, Xu C, et al. 2019. Xylooligosaccharides benefits the growth, digestive functions and TOR signaling in Megalobrama amblycephala fed diets with fish meal replaced by rice protein concentrate. Aquaculture 500:417−28 doi: 10.1016/j.aquaculture.2018.10.048 |
| [23] |
Abasubong KP, Li XF, Adjoumani JY, Jiang GZ, Desouky HE, et al. 2022. Effects of dietary xylooligosaccharide prebiotic supplementation on growth, antioxidant and intestinal immune-related genes expression in common carp Cyprinus carpio fed a high-fat diet. Journal of Animal Physiology and Animal Nutrition 106:403−18 doi: 10.1111/jpn.13669 |
| [24] |
Sun Y, Wang G, Peng K, Huang Y, Cao J, et al. 2019. Effects of dietary xylooligosaccharides on growth performance, immunity and Vibrio alginolyticus resistance of juvenile Litopenaeus vannamei. Aquaculture Research 50:358−65 doi: 10.1111/are.13911 |
| [25] |
Sun CY, Liu Y, Feng L, Jiang WD, Wu P, et al. 2021. Xylooligosaccharide supplementation improved growth performance and prevented intestinal apoptosis in grass carp. Aquaculture 535:736360 doi: 10.1016/j.aquaculture.2021.736360 |
| [26] |
Poolsawat L, Li X, Xu X, Rahman MM, Boonpeng N, et al. 2021. Dietary xylooligosaccharide improved growth, nutrient utilization, gut microbiota and disease resistance of Tilapia (Oreochromis niloticus x O. aureus). Animal Feed Science and Technology 275:114872 doi: 10.1016/j.anifeedsci.2021.114872 |
| [27] |
Van Doan H, Hoseinifar SH, Faggio C, Chitmanat C, Mai NT, et al. 2018. Effects of corncob derived xylooligosaccharide on innate immune response, disease resistance, and growth performance in Nile Tilapia (Oreochromis niloticus) fingerlings. Aquaculture 495:786−93 doi: 10.1016/j.aquaculture.2018.06.068 |
| [28] |
Wang C, Xu Z, Lu S, Jiang H, Li J, et al. 2022. Effects of dietary xylooligosaccharide on growth, digestive enzymes activity, intestinal morphology, and the expression of inflammatory cytokines and tight junctions genes in triploid Oncorhynchus mykiss fed a low fishmeal diet. Aquaculture Reports 22:100941 doi: 10.1016/j.aqrep.2021.100941 |
| [29] |
Xu B, Wang Y, Li J, Lin Q. 2009. Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiology and Biochemistry 35:351−57 doi: 10.1007/s10695-008-9248-8 |
| [30] |
Khizar A, Fatima M, Khan N, Rashid MA. 2024. Xylooligosaccharide supplementation in rice protein concentrate based diets: a comprehensive analysis of performance and health of Labeo rohita. Journal of Animal Physiology and Animal Nutrition 108:1059−71 doi: 10.1111/jpn.13951 |
| [31] |
Li JH, Liu JL, Cao XB, Li J, Liu SL. 2016. Effects of dietary xylo-oligosaccharides on growth performance, intestinal digestive enzyme activities and immunity of juvenile sea cucumber (Apostichopus japonicus selenka). Chinese Journal of Animal Nutrition 28(8):2534−41 doi: 10.3969/j.issn.1006-267x.2016.08.025 |
| [32] |
Zhu Q, He Y, Li Y, Liu H. 2023. Effects of xylo-oligosaccharides on growth, immunity and intestinal flora of Litopenaeus vannamei under low salinity stress. Journal of Southern Agriculture 54(2):618−28 doi: 10.3969/j.issn.2095-1191.2023.02.030 |
| [33] |
Yano T. 1996. The nonspecific immune system: humoral defense. In Fish physiology. vol. 15. USA: Academic Press. pp. 105−57. doi: 10.1016/S1546-5098(08)60273-3 |
| [34] |
Nawaz A, Bakhsh javaid A, Irshad S, Hoseinifar SH, Xiong H. 2018. The functionality of prebiotics as immunostimulant: evidences from trials on terrestrial and aquatic animals. Fish & Shellfish Immunology 76:272−78 doi: 10.1016/j.fsi.2018.03.004 |
| [35] |
Magrone T, Russo MA, Jirillo E. 2018. Dietary approaches to attain fish health with special reference to their immune system. Current Pharmaceutical Design 24:4921−31 doi: 10.2174/1381612825666190104121544 |
| [36] |
Iger Y, Abraham M. 1990. The process of skin healing in experimentally wounded carp. Journal of Fish Biology 36:421−37 doi: 10.1111/j.1095-8649.1990.tb05622.x |
| [37] |
Liu J, Wang B, Lai Q, Lu Y, Li L, et al. 2022. Boosted growth performance, immunity, antioxidant capacity and disease resistance of crucian carp (Carassius auratus) by single or in combination dietary Bacillus subtilis and xylo-oligosaccharides. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 256:109296 doi: 10.1016/j.cbpc.2022.109296 |
| [38] |
Agh N, Morshedi V, Noori F, Ghasemi A, Pagheh E, et al. 2022. The effects of single and combined use of Lactobacillus plantarum and xylooligosacharide on growth, feed utilization, immune responses, and immune and growth related genes of sobaity (Sparidentex hasta) fingerlings. Aquaculture Reports 25:101271 doi: 10.1016/j.aqrep.2022.101271 |
| [39] |
Hoseinifar SH, Yousefi S, Van Doan H, Ashouri G, Gioacchini G, et al. 2021. Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Reviews in Fisheries Science & Aquaculture 29:198−217 doi: 10.1080/23308249.2020.1795616 |
| [40] |
Zheng X, Jiang W, Zhang L, Abasubong KP, Zhang D, et al. 2022. Protective effects of dietary icariin on lipopolysaccharide-induced acute oxidative stress and hepatopancreas injury in Chinese mitten crab, Eriocheir sinensis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 251:109192 doi: 10.1016/j.cbpc.2021.109192 |
| [41] |
Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, et al. 2015. Probiotics as potential antioxidants: a systematic review. Journal of Agricultural and Food Chemistry 63:3615−26 doi: 10.1021/jf506326t |
| [42] |
Martínez-Álvarez RM, Morales AE, Sanz A. 2005. Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and Fisheries 15:75−88 doi: 10.1007/s11160-005-7846-4 |
| [43] |
Winston GW, Di Giulio RT. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology 19:137−61 doi: 10.1016/0166-445X(91)90033-6 |
| [44] |
Livingstone DR. 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin 42:656−66 doi: 10.1016/S0025-326X(01)00060-1 |
| [45] |
Zenteno-Savín T, Saldierna R, Ahuejote-Sandoval M. 2006. Superoxide radical production in response to environmental hypoxia in cultured shrimp. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 142:301−8 doi: 10.1016/j.cbpc.2005.11.001 |
| [46] |
Graf E. 1992. Antioxidant potential of ferulic acid. Free radical biology and medicine 13:435−448 doi: 10.1016/0891-5849(92)90184-I |
| [47] |
Rahman MM, Li X, Sharifuzzaman SM, He M, Poolsawat L, et al. 2021. Dietary threonine requirement of juvenile largemouth bass, Micropterus salmoides. Aquaculture 543:736884 doi: 10.1016/j.aquaculture.2021.736884 |
| [48] |
Van der Plank JE. 1984. Disease resistance in plants. 2nd Edition. Academic Press. doi: 10.1016/B978-0-12-711442-2.X5001-6 |
| [49] |
Medzhitov R, Schneider DS, Soares MP. 2012. Disease tolerance as a defense strategy. Science 335:936−41 doi: 10.1126/science.1214935 |
| [50] |
Guerreiro I, Oliva-Teles A, Enes P. 2018. Prebiotics as functional ingredients: focus on Mediterranean fish aquaculture. Reviews in Aquaculture 10:800−32 doi: 10.1111/raq.12201 |
| [51] |
Cicchese JM, Evans S, Hult C, Joslyn LR, Wessler T, et al. 2018. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunological Reviews 285:147−67 doi: 10.1111/imr.12671 |
| [52] |
Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, et al. 2024. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomedicine & Pharmacotherapy 178:117177 doi: 10.1016/j.biopha.2024.117177 |
| [53] |
Azeredo R, Machado M, Kreuz E, Wuertz S, Oliva-Teles A, et al. 2017. The European seabass (Dicentrarchus labrax) innate immunity and gut health are modulated by dietary plant-protein inclusion and prebiotic supplementation. Fish & Shellfish Immunology 60:78−87 doi: 10.1016/j.fsi.2016.11.019 |
| [54] |
Sullam KE, Essinger SD, Lozupone CA, O' Connor MP, Rosen GL, et al. 2012. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Molecular Ecology 21:3363−78 doi: 10.1111/j.1365-294X.2012.05552.x |
| [55] |
Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, et al. 2011. Microbial manipulations to improve fish health and production–A Mediterranean perspective. Fish & Shellfish Immunology 30:1−16 doi: 10.1016/j.fsi.2010.08.009 |
| [56] |
De Marco G, Cappello T, Maisano M. 2023. Histomorphological changes in fish gut in response to prebiotics and probiotics treatment to improve their health status: a review. Animals 13:2860 doi: 10.3390/ani13182860 |
| [57] |
Zhu L, Wang S, Cai Y, Shi H, Zhou Y, et al. 2023. Effects of five prebiotics on growth, antioxidant capacity, non-specific immunity, stress resistance, and disease resistance of juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Animals 13:754 doi: 10.3390/ani13040754 |
| [58] |
Hoseinifar SH, Khalili M, Sun YZ. 2016. Intestinal histomorphology, autochthonous microbiota and growth performance of the Oscar (Astronotus ocellatus Agassiz, 1831) following dietary administration of xylooligosaccharide. Journal of Applied Ichthyology 32:1137−41 doi: 10.1111/jai.13118 |
| [59] |
Geraylou Z, Souffreau C, Rurangwa E, De Meester L, Courtin CM, et al. 2013. Effects of dietary Arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenser baerii). Fish & Shellfish Immunology 35:766−75 doi: 10.1016/j.fsi.2013.06.014 |
| [60] |
Geraylou Z, Souffreau C, Rurangwa E, D' Hondt S, Callewaert L, et al. 2012. Effects of Arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish & Shellfish Immunology 33:718−24 doi: 10.1016/j.fsi.2012.06.010 |
| [61] |
Rawls JF, Mahowald MA, Ley RE, Gordon JI. 2006. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423−33 doi: 10.1016/j.cell.2006.08.043 |
| [62] |
Hahor W, Thongprajukaew K, Suanyuk N. 2019. Effects of dietary supplementation of oligosaccharides on growth performance, gut health and immune response of hybrid catfish (Pangasianodon gigas × Pangasianodon hypophthalmus). Aquaculture 507:97−107 doi: 10.1016/j.aquaculture.2019.04.010 |
| [63] |
Iliev I, Vasileva T, Bivolarski V, Momchilova A, Ivanova I. 2020. Metabolic profiling of xylooligosaccharides by lactobacilli. Polymers 12:2387 doi: 10.3390/polym12102387 |
| [64] |
Adjoumani JY, Abasubong KP, Zhang L, Ge YP, Liu WB, et al. 2022. A time-course study of the effects of a high-carbohydrate diet on the growth performance, glycolipid metabolism and mitochondrial biogenesis and function of blunt snout bream (Megalobrama amblycephala). Aquaculture 552:738011 doi: 10.1016/j.aquaculture.2022.738011 |
| [65] |
Chen WL, Ge YP, Sun M, He CF, Zhang L, et al. 2022. Insights into the correlations between prebiotics and carbohydrate metabolism in fish: Administration of xylooligosaccharides in Megalobrama amblycephala offered a carbohydrate-enriched diet. Aquaculture 561:738684 doi: 10.1016/j.aquaculture.2022.738684 |
| [66] |
Guerreiro I, Oliva-Teles A, Enes P. 2015. Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquaculture 441:57−63 doi: 10.1016/j.aquaculture.2015.02.015 |
| [67] |
Carnevali O, Sun YZ, Merrifield DL, Zhou Z, Picchietti S. 2014. Probiotic applications in temperate and warm water fish species. In Aquaculture Nutrition: gut health, probiotics and prebiotics, eds. Merrifield D, Ringø E. UK: John Wiley & Sons. pp. 253−89. doi: 10.1002/9781118897263.ch10 |
| [68] |
Wang Q, Zhao Y, Guo L, Ma X, Yang Y, et al. 2023. Xylo-oligosaccharides improve the adverse effects of plant-based proteins on weaned piglet health by maintaining the intestinal barrier and inhibiting harmful bacterial growth. Frontier in Microbiology 14:1189434 doi: 10.3389/fmicb.2023.1189434 |
| [69] |
Wang X, Zhang P, Zhang X. 2021. Probiotics regulate gut microbiota: an effective method to improve immunity. Molecules 26:6076 doi: 10.3390/molecules26196076 |
| [70] |
Xiong JB, Nie L, Chen J. 2019. Current understanding on the roles of gut microbiota in fish disease and immunity. Zoological Research 40:70−76 doi: 10.24272/j.issn.2095-8137.2018.069 |
| [71] |
Lee PT, Yamamoto FY, Low CF, Loh JY, Chong CM. 2021. Gut immune system and the implications of oral-administered immunoprophylaxis in finfish aquaculture. Frontiers in Immunology 12:773193 doi: 10.3389/fimmu.2021.773193 |
| [72] |
Rohani MF, Islam SM, Hossain MK, Ferdous Z, Siddik MAB, et al. 2022. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish & Shellfish Immunology 120:569−89 doi: 10.1016/j.fsi.2021.12.037 |