[1]

Wang J, Qu Y, Liu Z, Zhou H. 2021. Formation, analytical methods, change tendency, and control strategies of biogenic amines in canned aquatic products: a systematic review. Journal of Food Protection 84:2020−36

doi: 10.4315/JFP-21-120
[2]

Zhang X, Fang C, Huang D, Yang G, Tang Y, et al. 2021. Determination of 8 biogenic amines in aquatic products and their derived products by high-performance liquid chromatography-tandem mass spectrometry without derivatization. Food Chemistry 361:130044

doi: 10.1016/j.foodchem.2021.130044
[3]

LaBella FS, Brandes LJ. 2000. Interaction of histamine and other bioamines with cytochromes P450: implications for cell growth modulation and chemopotentiation by drugs. Seminars in Cancer Biology 10:47−53

doi: 10.1006/scbi.2000.0307
[4]

Yancey PH, Siebenaller JF. 1999. Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis. The Journal of Experimental Biology 202:3597−603

doi: 10.1242/jeb.202.24.3597
[5]

Boob MM, Sukenik S, Gruebele M, Pogorelov TV. 2023. TMAO: Protecting proteins from feeling the heat. Biophysical Journal 122:1414−22

doi: 10.1016/j.bpj.2023.03.008
[6]

Zhang Q, Guo X, Xie C, Cao Z, Wang X, et al. 2021. Unraveling the metabolic pathway of choline-TMA-TMAO: Effects of gypenosides and implications for the therapy of TMAO related diseases. Pharmacological Research 173:105884

doi: 10.1016/j.phrs.2021.105884
[7]

Velasquez MT, Ramezani A, Manal A, Raj DS. 2016. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins 8:326

doi: 10.3390/toxins8110326
[8]

Li Y, Song S, Li Y, Du F, Li S,et al. 2022. Novel insights into the inhibitory mechanism of (+)-catechin against trimethylamine-N-oxide demethylase. Food Chemistry 373:131559

doi: 10.1016/j.foodchem.2021.131559
[9]

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57−63

doi: 10.1038/nature09922
[10]

Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC, et al. 2018. Trimethylamine N-Oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. International Journal of Molecular Sciences 19:3228

doi: 10.3390/ijms19103228
[11]

Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, et al. 2015. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Reports 10:326−38

doi: 10.1016/j.celrep.2014.12.036
[12]

Lin Z, Han F, Lu J, Guo J, Qi C, et al. 2020. Influence of dietary phospholipid on growth performance, body composition, antioxidant capacity and lipid metabolism of Chinese mitten crab, Eriocheir sinensis. Aquaculture 516:734653

doi: 10.1016/j.aquaculture.2019.734653
[13]

Overland M, Rørvik KA, Skrede A. 1999. Effect of trimethylamine oxide and betaine in swine diets on growth performance, carcass characteristics, nutrient digestibility, and sensory quality of pork. American Society of Animal Science 77(8):2143−53

doi: 10.2527/1999.7782143x
[14]

Robinson JL, McBreairty LE, Randell EW, Brunton JA, Bertolo RF, et al. 2016. Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet. Journal of Nutritional Biochemistry 35:81−86

doi: 10.1016/j.jnutbio.2016.07.001
[15]

Ueland PM. 2011. Choline and betaine in health and disease. Journal of Inherited Metabolic Disease 34:3−15

doi: 10.1007/s10545-010-9088-4
[16]

Salazar-Díaz K, Dong Y, Papdi C, Ferruzca-Rubio EM, Olea-Badillo G, et al. 2021. TOR senses and regulates spermidine metabolism during seedling establishment and growth in maize and Arabidopsis. iScience 24:103260

doi: 10.1016/j.isci.2021.103260
[17]

Zabala-Letona A, Arruabarrena-Aristorena A, Martín-Martín N, Fernandez-Ruiz S, Sutherland JD, et al. 2017. mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature 547:109−13

doi: 10.1038/nature22964
[18]

Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274−93

doi: 10.1016/j.cell.2012.03.017
[19]

Marques-Ramos A, Cervantes R. 2023. Expression of mTOR in normal and pathological conditions. Molecular Cancer 22:112

doi: 10.1186/s12943-023-01820-z
[20]

Li Y, Lu C, Yu Z, Ma Q. 2020. Isolation of enterococcus faecium with feeding attractant function from pacific white shrimp (Litopenaeus vannamei) intestine. Journal of Ocean University of China 19:931−40

doi: 10.1007/s11802-020-4342-3
[21]

Li M, Wang A, Lin X, Miao H, Liu X, et al. 2023. Effects of dietary trimetlylamine oxide on the growth performance, feed utilization and appetite regulation of Chinese mitten crab (Eriocheir sinensis). Aquaculture 575:739754

doi: 10.1016/j.aquaculture.2023.739754
[22]

Tapia-Salazar M, Cruz-Suárez LE, Ricque-Marie D, Pike IH, Smith TK, et al. 2004. Effect of fishmeal made from stale versus fresh herring and of added crystalline biogenic amines on growth and survival of blue shrimp Litopenaeus stylirostris fed practical diets. Aquaculture 242:437−53

doi: 10.1016/j.aquaculture.2004.02.013
[23]

Jiang W, Jia X, Xie N, Wen C, Ma S, et al. 2023. Aquafeed fermentation improves dietary nutritional quality and benefits feeding behavior, meat flavor, and intestinal microbiota of Chinese mitten crab (Eriocheir sinensis). Animal Nutrition 14:1−19

doi: 10.1016/j.aninu.2023.04.002
[24]

Gui Y, Wang X, Chen X, Wang Q, Yin Y, et al. 2022. Balancing the health effect between risks of methylmercury and benefits of nutrients in consumption of Chinese mitten crab (Eriocheir sinensis) in China. Environmental Science and Pollution Research International 29:38527−34

doi: 10.1007/s11356-022-18822-x
[25]

Qiu JF, Luo C, Ren LH, Li W, Dai TM, et al. 2023. Black soldier fly larvae replace traditional iced trash fish diet to enhance the delicious flavor of Chinese mitten crab (Eriocheir sinensis). Frontiers in Marine Science 9:1089421

doi: 10.3389/fmars.2022.1089421
[26]

Fan Z, Zou J, Wang Q, Qiu L, Hu G, et al. 2021. Quantitative benefit and risk assessment of cadmium and nutrient levels in Chinese mitten crab (Eriocheir sinensis). Environmental Science and Pollution Research International 28:7322−31

doi: 10.1007/s11356-020-10977-9
[27]

Raymond JA, DeVries AL. 1998. Elevated concentrations and synthetic pathways of trimethylamine oxide and urea in some teleost fishes of McMurdo Sound, Antarctica. Fish Physiology and Biochemistry 18:387−98

doi: 10.1023/A:1007778728627
[28]

Yuan XY, Liu MY, Cheng HH, Huang YY, Dai YJ, et al. 2019. Replacing fish meal with cottonseed meal protein hydrolysate affects amino acid metabolism via AMPK/SIRT1 and TOR signaling pathway of Megalobrama amblycephala. Aquaculture 510:225−33

doi: 10.1016/j.aquaculture.2019.05.056
[29]

Dong Y, Wei Y, Wang L, Song K, Zhang C, et al. 2023. Dietary n-3/n-6 polyunsaturated fatty acid ratio modulates growth performance in spotted seabass (Lateolabrax maculatus) through regulating lipid metabolism, hepatic antioxidant capacity and intestinal health. Animal Nutrition 14:20−31

doi: 10.1016/j.aninu.2023.04.005
[30]

Hua HK, Guo HX, Liu WB, Liu ZS, He CF, et al. 2023. Dietary nicotinic acid promotes the growth and tryptophan metabolome of Chinese mitten crab (Eriocheir sinensis) through ACMSD and NADs. Aquaculture Reports 33:101800

doi: 10.1016/j.aqrep.2023.101800
[31]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[32]

Dai YJ, Liu WB, Abasubong KP, Zhang DD, Li XF, et al. 2022. The mechanism of lipopolysaccharide escaping the intestinal barrier in Megalobrama amblycephala fed a high-fat diet. Frontiers in Nutrition 9:853409

doi: 10.3389/fnut.2022.853409
[33]

Bunlipatanon P, Songseechan N, Kongkeo H, Abery NW, De Silva SS. 2014. Comparative efficacy of trash fish versus compounded commercial feeds in cage aquaculture of Asian seabass (Lates calcarifer) (Bloch) and tiger grouper (Epinephelus fuscoguttatus) (Forsskål). Aquaculture Research 45:373−88

doi: 10.1111/j.1365-2109.2012.03234.x
[34]

McNamara LE, Lambert EC, Reinemann DN, Valle H, Keith Hollis T, et al. 2022. Raman spectroscopic, computational, and X-ray crystallographic investigation of intermolecular interactions in trimethylamine N-oxide (TMAO) and TMAO-d9. Chemical Physics Letters 805:139928

doi: 10.1016/j.cplett.2022.139928
[35]

Foster DA. 2013. Phosphatidic acid and lipid-sensing by mTOR. Trends in Endocrinology & Metabolism 24:272−8

doi: 10.1016/j.tem.2013.02.003
[36]

Gu X, Orozco JM, Saxton RA, Condon KJ, Liu GY, et al. 2017. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358:813−18

doi: 10.1126/science.aao3265
[37]

Wang X, Lei XY, Guo ZX, Wang S, Wan JW, et al. 2022. The immuneoreaction and antioxidant status of Chinese mitten crab (Eriocheir sinensis) involve protein metabolism and the response of mTOR signaling pathway to dietary methionine levels. Fish and Shellfish Immunology 127:703−14

doi: 10.1016/j.fsi.2022.07.012
[38]

Wang CA, Xu QY, Xu H, Yin JS, Wang Y. 2012. Trimethylamine oxide in diets for Taimen (Hucho taimen): effects on growth performance, muscle composition, gastrointestinal lipase activity and serum biochemical indices. Chinese Journal of Animal Nutrition 24(11):2279−86

doi: 10.3969/j.issn.1006-267x.2012.11.029
[39]

Ma HJ, Liu XY, Liu K, et al. 2015. The effect of adding trimethylamine oxide to feed on the growth performance and muscle composition of triangular bream. Feed Research 16:49−53

doi: 10.13557/j.cnki.issn1002-2813.2015.16.012
[40]

Tusche K, Berends K, Wuertz S, Susenbeth A, Schulz C. 2011. Evaluation of feed attractants in potato protein concentrate based diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 321(1−2):54−60

doi: 10.1016/j.aquaculture.2011.08.020