[1]

FAO. 2010. The second report on the state of world's plant genetic resources for food and agriculture. FAO, Rome. 47 pp

[2]

Walters C, Wheeler LM, Grotenhuis JM. 2005. Longevity of seeds stored in a genebank: species characteristics. Seed Science Research 15(1):1−20

doi: 10.1079/SSR2004195
[3]

Almogdad M, Jonavičienė A, Semaškienė R. 2023. Bruchus rufimanus Boh. Effect on broad bean seed quality and the infection level of seed-borne fungal pathogens. Plants 12:1825

doi: 10.3390/plants12091825
[4]

Esmaeili Taheri A, Chatterton S, Foroud NA, Gossen BD, McLaren DL. 2017. Identification and community dynamics of fungi associated with root, crown, and foot rot of field pea in western Canada. European Journal of Plant Pathology 147:489−500

doi: 10.1007/s10658-016-1017-4
[5]

Liu J, Deng J, Yang C, Huang N, Chang X, et al. 2017. Fungal diversity in field mold-damaged soybean fruits and pathogenicity identification based on high-throughput rDNA sequencing. Frontiers In Microbiology 8:779

doi: 10.3389/fmicb.2017.00779
[6]

de Oliveira Silva A, Aliyeva-Schnorr L, Wirsel SGR, Deising HB. 2022. Fungal pathogenesis-related cell wall biogenesis, with emphasis on the maize anthracnose fungus Colletotrichum graminicola. Plants 11(7):849

doi: 10.3390/plants11070849
[7]

Güçlü T, Özer N. 2022. Trichoderma harzianum antagonistic activity and competition for seed colonization against seedborne pathogenic fungi of sunflower. Letters in Applied Microbiology 74(6):1027−35

doi: 10.1111/lam.13698
[8]

Britton BC, Sarr I, Oliver HF. 2021. Enterobacteriaceae, coliform, yeast, and mold contamination patterns in peanuts compared to production, storage, use practices, and knowledge of food safety among growers in Senegal. International Journal of Food Microbiology 360:109437

doi: 10.1016/j.ijfoodmicro.2021.109437
[9]

Kaela CR, Lilly M, Rheeder JP, Misihairabgwi JM, Alberts JF. 2023. Mycological and multiple mycotoxin surveillance of sorghum and pearl millet produced by smallholder farmers in Namibia. Current Microbiology 80:164

doi: 10.1007/s00284-023-03263-7
[10]

Deng J, Li X, Xiao X, Wu H, Yang C, et al. 2022. Field mold stress induced catabolism of storage reserves in soybean seed and the resulting deterioration of seed quality in the field. Journal of Integrative Agriculture 21(2):336−50

doi: 10.1016/S2095-3119(20)63594-8
[11]

Ma X, Liu Y, Liu J, Zhang J, Liu R. 2020. Changes in starch structures and in vitro digestion characteristics during maize (Zea mays L.) germination. Food Science & Nutrition 8:1700−08

doi: 10.1002/fsn3.1457
[12]

Bautista-Expósito S, Vandenberg A, Peñas E, Frias J, Martínez-Villaluenga C. 2021. Lentil and fava bean with contrasting germination kinetics: a focus on digestion of proteins and bioactivity of resistant peptides. Frontiers in Plant Science 12:754287

doi: 10.3389/fpls.2021.754287
[13]

Cao D, Ma Y, Cao Z, Hu S, Li Z, et al. 2024. Coordinated lipid mobilization during seed development and germination in peanut (Arachis hypogaea L.). Journal of Agricultural and Food Chemistry 72(6):3218−30

doi: 10.1021/acs.jafc.3c06697
[14]

Salvatore MM, Andolfi A. 2021. Phytopathogenic fungi and toxicity. Toxins 13(10):689

doi: 10.3390/toxins13100689
[15]

dos Santos F, Medina PF, Lourenção AL, Parisi JJD, de Godoy IJ. 2016. Damage caused by fungi and insects to stored peanut seeds before processing. Bragantia 75:184−92

doi: 10.1590/1678-4499.182
[16]

ISTA. 2013. International rules for seed testing. Switzerland: International Seed Testing Association

[17]

Fang Z. 1998. Research methods of plant disease. Beijing: China Agriculture Press

[18]

Cheng CY, Zhang MY, Niu YC, Zhang M, Geng YH, et al. 2023. Comparison of fungal genera isolated from cucumber plants and rhizosphere soil by using various cultural media. Journal of Fungi 9(9):934

doi: 10.3390/jof9090934
[19]

Li P, Li Y, Zheng X, Ding L, Ming F, et al. 2018. Rice straw decomposition affects diversity and dynamics of soil fungal community, but not bacteria. Journal of Soils and Sediments 18:248−58

doi: 10.1007/s11368-017-1749-6
[20]

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194−200

doi: 10.1093/bioinformatics/btr381
[21]

Wang Y, Guo H, Gao X, Wang J. 2021. The intratumor microbiota signatures associate with subtype, tumor stage, and survival status of esophageal carcinoma. Frontiers in Oncology 11:754788

doi: 10.3389/fonc.2021.754788
[22]

Tintor N, Paauw M, Rep M, Takken FLW. 2020. The root-invading pathogen Fusarium oxysporum targets pattern-triggered immunity using both cytoplasmic and apoplastic effectors. New Phytologist 227(5):1479−92

doi: 10.1111/nph.16618
[23]

Jackson E, Li J, Weerasinghe T, Li X. 2024. The ubiquitous wilt-inducing pathogen Fusarium oxysporum—a review of genes studied with mutant analysis. Pathogens 13(10):823

doi: 10.3390/pathogens13100823
[24]

Sun W, Lei T, Yuan H, Chen S. 2023. Occurrence of root rot caused by Fusarium fujikuroi and Fusarium proliferatum on peanut in China. Plant Disease 107:940

doi: 10.1094/PDIS-02-22-0438-PDN
[25]

Echodu R, Malinga GM, Kaducu JM, Ovuga E, Haesaert G. 2019. Prevalence of aflatoxin, ochratoxin and deoxynivalenol in cereal grains in northern Uganda: implication for food safety and health. Toxicology Reports 6:1012−17

doi: 10.1016/j.toxrep.2019.09.002
[26]

Bryła M, Pierzgalski A, Zapaśnik A, Uwineza PA, Ksieniewicz-Woźniak E, et al. 2022. Recent research on Fusarium mycotoxins in maize—a review. Foods 11(21):3465

doi: 10.3390/foods11213465
[27]

Tekle S, Skinnes H, Bjørnstad A. 2013. The germination problem of oat seed lots affected by Fusarium head blight. European Journal of Plant Pathology 135(1):147−58

doi: 10.1007/s10658-012-0074-6
[28]

Kgatle MG, Flett B, Truter M, Aveling TAS. 2020. Control of Alternaria leaf blight caused by Alternaria alternata on sunflower using fungicides and Bacillus amyloliquefaciens. Crop Protection 132:105146

doi: 10.1016/j.cropro.2020.105146
[29]

Wei JP, Ma WX, Liu XY, Xu JJ, Zhang N, et al. 2020. First report of leaf spot on Sorghum bicolor caused by Alternaria tenuissima in China. Plant Disease 104(10):2729

doi: 10.1094/PDIS-03-20-0473-PDN
[30]

Zhang X, Xu M, Yu J, Wu J, Guo Z, et al. 2021. First report of Alternaria alternata causing peanut grey blight in China. Journal of Plant Pathology 103:677

doi: 10.1007/s42161-021-00766-9
[31]

Ertoy N. 2023. Morphological and molecular characterization of Alternaria alternata causing leaf spot in faba bean (Vicia faba L.) and determination of the disease reactions of some faba bean varieties grown in Turkey. Journal of Crop Health 75:637−45

doi: 10.1007/s10343-022-00728-w
[32]

Li H, Bian R, Liu Q, Yang L, Pang T, et al. 2019. Identification of a novel hypovirulence-inducing hypovirus from Alternaria alternata. Frontiers in Microbiology 10:1076

doi: 10.3389/fmicb.2019.01076
[33]

El-Dawy EGAEM, Gherbawy YA, Hussein MA. 2021. Morphological, molecular characterization, plant pathogenicity and biocontrol of Cladosporium complex groups associated with faba beans. Scientific Reports 11:14183

doi: 10.1038/s41598-021-93123-w
[34]

Soesanto L, Hartono ARR, Mugiastuti E, Widarta H. 2020. Seed-borne pathogenic fungi on some soybean varieties. Biodiversitas Journal of Biological Diversity 21:4010−5

doi: 10.13057/biodiv/d210911
[35]

Ragukula K, Makandar R. 2023. Cladosporium cladosporioides causes leaf blight on garden pea in Telangana, India. Plant Disease 107:2239

doi: 10.1094/PDIS-09-22-2175-PDN
[36]

Cosseboom SD, Hu M. 2023. Identification and pathogenicity of Cladosporium, Fusarium, and Diaporthe spp. associated with late-season bunch rots of grape. Plant Disease 107(10):2929−34

doi: 10.1094/PDIS-01-23-0146-SC
[37]

Kleczewski NM, Flory SL, Clay K. 2012. Variation in pathogenicity and host range of Bipolaris sp. causing leaf blight disease on the invasive grass Microstegium vimineum. Weed Research 60(3):486−93

[38]

Al-Sadi AM. 2021. Bipolaris sorokiniana-induced black point, common root rot, and spot blotch diseases of wheat: a review. Frontiers in Cellular and Infection Microbiology 11:584899

doi: 10.3389/fcimb.2021.584899
[39]

Prashantha ST, Bashyal BM, Krishnan SG, Dubey H, Solanke AU, et al. 2021. Identification and expression analysis of pathogenicity-related genes of Rhizoctonia solani anastomosis groups infecting rice. 3 Biotech 11(8):394

doi: 10.1007/s13205-021-02934-1
[40]

Salman O, Boyraz N. 2023. Determination of disease severity of Rhizoctonia solani Kühn (Telemorph: Thanatephorus cucumeris (Frank) Donk) isolates from bean, sugar beet and potato planting areas in Konya. Selcuk Journal of Agriculture and Food Sciences 37(1):119−32

doi: 10.15316/SJAFS.2023.013
[41]

Li W, Jiang Y, Hu C, Liu G, Li Y, et al. 2023. Identification, pathogenic mechanism and control of Rhizopus oryzae causing postharvest fruit rot in pumpkin. Postharvest Biology and Technology 204(3):112460

doi: 10.1016/j.postharvbio.2023.112460
[42]

Stošić S, Ristić D, Gašić K, Starović M, Ljaljević Grbić M, et al. 2020. Talaromyces minioluteus: new postharvest fungal pathogen in Serbia. Plant Disease 104(3):656−67

doi: 10.1094/PDIS-08-19-1806-RE
[43]

Liu C, Han X, Steenwyk JL, Shen X. 2023. Temporal transcriptomics provides insights into host‒pathogen interactions: a case study of Didymella pinodella and disease-resistant and disease-susceptible pea varieties. Crop Health 1(1):5

doi: 10.1007/s44297-023-00005-w
[44]

Tsekhmister HV, Kyslynska АS. 2022. Plectosphaerella melonis (Syn. Acremonium cucurbitacearum) — plant pathogenic organism. International Journal of Microbiology 84:92−100

doi: 10.15407/microbiolj84.03.092
[45]

Woodstock LW, Tao KLJ. 1981. Prevention of imbibitional injury in low vigor soybean embryonic axes by osmotic control of water uptake. Physiologia Plantarum 51:133−39

doi: 10.1111/j.1399-3054.1981.tb00891.x
[46]

Maucieri C, Caruso C, Bona S, Borin M, Barbera AC, et al. 2018. Influence of salinity and osmotic stress on germination process in an old sicilian landrace and a modern cultivar of Triticum Durum Desf. Cereal Research Communications 46:253−62

doi: 10.1556/0806.46.2018.07
[47]

Akbari M, Akbari M, Akbari D, Sajedi NA. 2012. Influence of sodium hypochlorite on seed germination and early seedling growth of rice (Oryza sativa L.) variety Tarum. Research on Crops 13(1):11−15

[48]

Al-Amodi MO. 2016. Fungi associated with seeds of Ashford variety of groundnut grown in Yemen and its disinfection in vitro using sodium hypochlorite. Journal of Global Biosciences 5(1):3414−22

[49]

Yildiz M, Er C. 2002. The effect of sodium hypochlorite solutions on in vitro seedling growth and shoot regeneration of flax (Linum usitatissimum). The Science of Nature 89:259−61

doi: 10.1007/s00114-002-0310-6
[50]

Salazar Mercado SA, Maldonado Bayona HA. 2020. Evaluation of the cytotoxic potential of sodium hypochlorite using meristematic root cells of Lens culinaris Med. Science of The Total Environment 701:134992

doi: 10.1016/j.scitotenv.2019.134992
[51]

Macías-Rubalcava ML, Ruiz-Velasco Sobrino ME, Meléndez-González C, King-Díaz B, Lotina-Hennsen B. 2014. Selected phytotoxins and organic extracts from endophytic fungus Edenia gomezpompae as light reaction of photosynthesis inhibitors. Journal of Photochemistry And Photobiology B: Biology 138:17−26

doi: 10.1016/j.jphotobiol.2014.05.003
[52]

Anderson NR, Mehl KM, Neves DL, Bradley CA, Wise KA. 2019. First report of curvularia leaf spot of corn, caused by Curvularia lunata, in Kentucky. Plant Disease 103:2692

doi: 10.1094/PDIS-03-19-0629-PDN
[53]

Mao Y, Wu J, Song W, Zhao B, Zhao H, et al. 2023. Occurrence and chemical control strategy of wheat brown foot rot caused by Microdochium majus. Plant Disease 107(11):3523−30

doi: 10.1094/PDIS-02-23-0392-RE
[54]

McDonald MC, Ahren D, Simpfendorfer S, Milgate A, Solomon PS. 2018. The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokiniana. Molecular Plant Pathology 19(2):432−39

doi: 10.1111/mpp.12535