[1]

Zhao Y, Chen D, Fan J. 2020. Sustainable development problems and countermeasures: a case study of the Qinghai-Tibet Plateau. Geography and Sustainability 1:275−83

doi: 10.1016/j.geosus.2020.11.002
[2]

Liu JQ, Li JL, Lai YJ. 2021. Plant diversity and ecology on the Qinghai–Tibet Plateau. Journal of Systematics and Evolution 59:1139−41

doi: 10.1111/jse.12813
[3]

Li XL, Gao J, Brierley G, Qiao YM, Zhang J, et al. 2013. Rangeland Degradation on the Qinghai-Tibet Plateau: Implications for Rehabilitation. Land Degradation & Development 24:72−80

doi: 10.1002/ldr.1108
[4]

Liu Y, Ren H, Zheng C, Zhou R, Hu T, et al. 2021. Untangling the effects of management measures, climate and land use cover change on grassland dynamics in the Qinghai–Tibet Plateau, China. Land Degradation & Development 32:4974−87

doi: 10.1002/ldr.4084
[5]

Guo W, Xin M, Wang Z, Yao Y, Hu Z, et al. 2020. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nature Communications 11:5085

doi: 10.1038/s41467-020-18738-5
[6]

Zhang J, Dong KL, Ren MZ, Wang ZW, Li JH, et al. 2024. Coping with alpine habitats: genomic insights into the adaptation strategies of Triplostegia glandulifera (Caprifoliaceae). Horticulture Research 11:uhae077

doi: 10.1093/hr/uhae077
[7]

Zhang T, Chen J, Zhang J, Guo YT, Zhou X, et al. 2021. Phenotypic and genomic adaptations to the extremely high elevation in plateau zokor (Myospalax baileyi). Molecular Ecology 30:5765−79

doi: 10.1111/mec.16174
[8]

Storz JF. 2021. High-altitude adaptation: mechanistic insights from integrated genomics and physiology. Molecular Biology and Evolution 38:2677−91

doi: 10.1093/molbev/msab064
[9]

Qi X, Zhang Q, He Y, Yang L, Zhang X, et al. 2019. The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome biology and evolution 11:72−85

doi: 10.1093/gbe/evy264
[10]

Zeng X, Yuan H, Dong X, Peng M, Jing X, et al. 2020. Genome-wide dissection of co-selected UV-B responsive pathways in the UV-B adaptation of Qingke. Molecular Plant 13:112−27

doi: 10.1016/j.molp.2019.10.009
[11]

Yang F-S, Liu M, Guo X, Xu C, Jiang J, et al. 2024. Signatures of Adaptation and Purifying Selection in Highland Populations of Dasiphora fruticosa. Molecular Biology and Evolution 41:msae099

doi: 10.1093/molbev/msae099
[12]

Wang X, Liu S, Zuo H, Zheng W, Zhang S, et al. 2021. Genomic basis of high-altitude adaptation in Tibetan Prunus fruit trees. Current Biology 31:3848−3860. e8

doi: 10.1016/j.cub.2021.06.062
[13]

Wu X, Xiao J. 2024. Response and adaptive mechanism of flavonoids in pigmented potatoes at different altitudes. Plant and Cell Physiology 65:1184−96

doi: 10.1093/pcp/pcae045
[14]

Liu XW, Wang YH, Shen SK. 2022. Transcriptomic and metabolomic analyses reveal the altitude adaptability and evolution of different-colored flowers in alpine Rhododendron species. Tree Physiology 42:1100−13

doi: 10.1093/treephys/tpab160
[15]

Cao YN, Zhu SS, Chen J, Comes HP, Wang IJ, et al. 2020. Genomic insights into historical population dynamics, local adaptation, and climate change vulnerability of the East Asian Tertiary relict Euptelea (Eupteleaceae). Evolutionary Applications 13:2038−55

doi: 10.1111/eva.12960
[16]

Shen Y, Xia H, Tu Z, Zong Y, Yang L, et al. 2022. Genetic divergence and local adaptation of Liriodendron driven by heterogeneous environments. Molecular Ecology 31:916−33

doi: 10.1111/mec.16271
[17]

Li Y, Cao K, Li N, Zhu G, Fang W, et al. 2021. Genomic analyses provide insights into peach local adaptation and responses to climate change. Genome Research 31:592−606

doi: 10.1101/gr.261032.120
[18]

Chen B, Wang G, Peng S. 2009. Role of desert annuals in nutrient flow in arid area of Northwestern China: a nutrient reservoir and provider. Plant ecology 201:401−9

doi: 10.1007/s11258-008-9526-7
[19]

Qian C, Yin H, Shi Y, Zhao J, Yin C, et al. 2016. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change. Scientific Reports 6:26613

doi: 10.1038/srep26613
[20]

Ma Q, Wang J, Zhang J, Zhan K, Zhang D, et al. 2008. Ecological protective function of a pioneer species (Agriophyllum squarrosum) on shifting sand dunes. Journal of Soil and Water Conservation 22:140−145,150 (in Chinese)

doi: 10.13870/j.cnki.stbcxb.2008.01.008
[21]

Chen G, Zhao J, Zhao X, Zhao P, Duan R, et al. 2014. A psammophyte Agriophyllum squarrosum (L.) Moq.: a potential food crop. Genetic Resources And Crop Evolution 61:669−76

doi: 10.1007/s10722-014-0083-8
[22]

Yin X, Wang W, Qian C, Fan X, Yan X, et al. 2018. Analysis of metabolomics in Agriophyllum squarrosum based on UPLC-MS. Chinese Journal of Experimental Traditional Medical Formulae 24:51−56 (in Chinese)

doi: 10.13422/j.cnki.syfjx.20181503
[23]

Zhu Y. 2000. Botanical pharmacopeias of Inner Mongolia. China: Inner Mongolia People's Publishing House. 299 pp.

[24]

Liang Y, Jiao D, Du X, Zhou J, Degen AA, et al. 2023. Effect of dietary Agriophyllum squarrosum on average daily gain, meat quality and muscle fatty acids in growing Tan lambs. Meat Science 201:109195

doi: 10.1016/j.meatsci.2023.109195
[25]

Jiao D, Liang Y, Zhou S, Wu X, Degen AA, et al. 2022. Supplementing diets with Agriophyllum squarrosum reduced blood lipids, enhanced immunity and anti-inflammatory capacities, and mediated lipid metabolism in Tan lambs. Animals 12:3486

doi: 10.3390/ani12243486
[26]

Qian C, Yan X, Fang T, Yin X, Zhou S, et al. 2021. Genomic adaptive evolution of sand rice (Agriophyllum squarrosum) and its implications for desert ecosystem restoration. Frontiers in Genetics 12:656061

doi: 10.3389/fgene.2021.656061
[27]

Fang T, Zhou S, Qian C, Yan X, Yin X, et al. 2022. Integrated metabolomics and transcriptomics insights on flavonoid biosynthesis of a medicinal functional forage, Agriophyllum squarrosum (L.), based on a common garden trial covering six ecotypes. Frontiers in Plant Science 13:985572

doi: 10.3389/fpls.2022.985572
[28]

Zhou S, Yan X, Yang J, Qian C, Yin X, et al. 2021. Variations in flavonoid metabolites along altitudinal gradient in a desert medicinal plant Agriophyllum squarrosum. Frontiers in Plant Science 12:683265

doi: 10.3389/fpls.2021.683265
[29]

Zhao PS, Yan X, Qian CJ, Ma GR, Fan XK, et al. 2024. Flavonoid synthesis pathway response to low-temperature stress in a desert medicinal plant, Agriophyllum Squarrosum (Sandrice). Genes 15:1228

doi: 10.3390/genes15091228
[30]

Chen W, Gong L, Guo Z, Wang W, Zhang H, et al. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular Plant 6:1769−80

doi: 10.1093/mp/sst080
[31]

Shi Y, Yan X, Zhao P, Yin H, Zhao X, et al. 2013. Transcriptomic analysis of a tertiary relict plant, extreme xerophyte Reaumuria soongorica to identify genes related to drought adaptation. Plos One 8:e63993

doi: 10.1371/journal.pone.0063993
[32]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52

doi: 10.1038/nbt.1883
[33]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[34]

Zhang Z, Xiao J, Wu J, Zhang H, Liu G, et al. 2012. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochemical and Biophysical Research Communications 419:779−81

doi: 10.1016/j.bbrc.2012.02.101
[35]

Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. 2010. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics, proteomics & bioinformatics 8:77−80

doi: 10.1016/S1672-0229(10)60008-3
[36]

Yang ZH, Nielsen R. 2000. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology and Evolution 17:32−43

doi: 10.1093/oxfordjournals.molbev.a026236
[37]

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:1586−91

doi: 10.1093/molbev/msm088
[38]

Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M. 2013. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. International Journal of Molecular Sciences 14:3540−55

doi: 10.3390/ijms14023540
[39]

Martínez-Lüscher J, Torres N, Hilbert G, Richard T, Sánchez-Díaz M, et al. 2014. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry 102:106−14

doi: 10.1016/j.phytochem.2014.03.014
[40]

Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M, Turkan I. 2020. Flavonoid naringenin alleviates short-term osmotic and salinity stresses through regulating photosynthetic machinery and chloroplastic antioxidant metabolism in Phaseolus vulgaris. Frontiers in Plant Science 11:682

doi: 10.3389/fpls.2020.00682
[41]

Zhao QZ, Dong MY, Li MF, Jin L, Pare PW. 2023. Light-induced flavonoid biosynthesis in Sinopodophyllum hexandrum with high-altitude adaptation. Plants 12:575

doi: 10.3390/plants12030575
[42]

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Proc. Nucleic acids symposium series 41:95−98

[43]

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585−95

doi: 10.1093/genetics/123.3.585
[44]

Watterson G. 1975. On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7:256−76

doi: 10.1016/0040-5809(75)90020-9
[45]

Nei M. 1987. Molecular evolutionary genetics. New York Chichester, West Sussex: Columbia University Press. doi: 10.7312/nei-92038

[46]

Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451−52

doi: 10.1093/bioinformatics/btp187
[47]

Excoffier L, Laval G, Schneider S. 2007. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47−50

[48]

Fay JC, Wu CI. 2000. Hitchhiking under positive Darwinian selection. Genetics 155:1405−13

doi: 10.1093/genetics/155.3.1405
[49]

Zeng K, Fu YX, Shi S, Wu CI. 2006. Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 174:1431−39

doi: 10.1534/genetics.106.061432
[50]

Charlesworth J, Eyre-Walker A. 2008. The McDonald–Kreitman test and slightly deleterious mutations. Molecular Biology and Evolution 25:1007−15

doi: 10.1093/molbev/msn005
[51]

Li H. 2011. A new test for detecting recent positive selection that is free from the confounding impacts of demography. Molecular Biology and Evolution 28:365−75

doi: 10.1093/molbev/msq211
[52]

Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16:37−48

doi: 10.1093/oxfordjournals.molbev.a026036
[53]

Scossa F, Brotman Y, de Abreu e Lima F, Willmitzer L, Nikoloski Z, et al. 2016. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. Plant Science 242:47−64

doi: 10.1016/j.plantsci.2015.05.021
[54]

Magaña Ugarte R, Escudero A, Gavilán RG. 2019. Metabolic and physiological responses of Mediterranean high‐mountain and alpine plants to combined abiotic stresses. Physiologia Plantarum 165:403−412

doi: 10.1111/ppl.12898
[55]

Shukla R, Pandey V, Vadnere GP, Lodhi S. 2019. Role of flavonoids in management of inflammatory disorders. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, ed. Watson RR, Preedy VR. 2nd Edition. United States: Academic Press. pp. 293−22. doi: 10.1016/b978-0-12-813820-5.00018-0

[56]

Iranshahi M, Rezaee R, Parhiz H, Roohbakhsh A, Soltani F. 2015. Protective effects of flavonoids against microbes and toxins: the cases of hesperidin and hesperetin. Life Sciences 137:125−32

doi: 10.1016/j.lfs.2015.07.014
[57]

Qian C, Yan X, Shi Y, Yin H, Chang Y, et al. 2020. Adaptive signals of flowering time pathways in wild barley from Israel over 28 generations. Heredity 124:62−76

doi: 10.1038/s41437-019-0264-5
[58]

Chen K, Song M, Guo Y, Liu L, Xue H, et al. 2019. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnology Journal 17:2341−2355

doi: 10.1111/pbi.13151
[59]

Zhang J, Yin XR, Li H, Xu M, Zhang MX, et al. 2020. ETHYLENE RESPONSE FACTOR39–MYB8 complex regulates low-temperature-induced lignification of loquat fruit. Journal of Experimental Botany 71:3172−84

doi: 10.1093/jxb/eraa085
[60]

Wu Q, Han TS, Chen X, Chen JF, Zou YP, et al. 2017. Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biology 18:217

doi: 10.1186/s13059-017-1342-8