| [1] |
Yu D, Wei W, Fan Z, Chen J, You Y, et al. 2023. VabHLH137 promotes proanthocyanidin and anthocyanin biosynthesis and enhances resistance to Colletotrichum gloeosporioides in grapevine. Horticulture Research 10:uhac261 doi: 10.1093/hr/uhac261 |
| [2] |
Cui Z, Gu J, Li J, Zhao A, Fu Y, et al. 2022. Tyrosine promotes anthocyanin biosynthesis in pansy (Viola × wittrockiana) by inducing ABA synthesis. Tropical Plants 1:9 doi: 10.48130/tp-2022-0009 |
| [3] |
Jiang L, Yue M, Liu Y, Zhang N, Lin Y, et al. 2023. A novel R2R3-MYB transcription factor FaMYB5 positively regulates anthocyanin and proanthocyanidin biosynthesis in cultivated strawberries (Fragaria x ananassa). Plant Biotechnology Journal 21:1140−58 doi: 10.1111/pbi.14024 |
| [4] |
Zhang S, Wang H, Wang T, Liu W, Zhang J, et al. 2023. MdMYB305-MdbHLH33-MdMYB10 regulates sugar and anthocyanin balance in red-fleshed apple fruits. The Plant Journal 113:1062−79 doi: 10.1111/tpj.16100 |
| [5] |
Meng J, Wang H, Chi R, Qiao Y, Wei J, et al. 2023. The eTM-miR858-MYB62-like module regulates anthocyanin biosynthesis under low-nitrogen conditions in Malus spectabilis. New Phytologist 238:2524−44 doi: 10.1111/nph.18894 |
| [6] |
Xu Q, Xia M, He G, Zhang Q, Meng Y, et al. 2022. New insights into the influence of NHX-type Cation/H+ antiporter on flower color in Phalaenopsis orchids. Journal of plant physiology 279:153857 doi: 10.1016/j.jplph.2022.153857 |
| [7] |
Liu H, Liu Z, Wu Y, Zheng L, Zhang G. 2021. Regulatory mechanisms of anthocyanin biosynthesis in apple and pear. International Journal of Molecular Sciences 22:8441 doi: 10.3390/ijms22168441 |
| [8] |
Hao YX, Wang J, Hu C, Zhou Q, Mubeen HM, et al. 2022. Regulation of BcMYB44 on anthocyanin synthesis and drought tolerance in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino). Horticulturae 8(5):351 doi: 10.3390/horticulturae8050351 |
| [9] |
An JP, Zhang XW, Bi SQ, You CX, Wang XF, et al. 2020. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. The Plant Journal 101:573−589 doi: 10.1111/tpj.14555 |
| [10] |
Chao N, Wang RF, Hou C, Yu T, Miao K, et al. 2021. Functional characterization of two Chalcone isomerase (CHI) revealing their responsibility for anthocyanins accumulation in mulberry. Plant physiology and biochemistry 161:65−73 doi: 10.1016/j.plaphy.2021.01.044 |
| [11] |
Wang Y, Zhou LJ, Wang Y, Liu S, Geng Z, et al. 2021. Functional identification of a flavone synthase and a flavonol synthase genes affecting flower color formation in Chrysanthemum morifolium. Plant Physiology and Biochemistry 166:1109−20 doi: 10.1016/j.plaphy.2021.07.019 |
| [12] |
Nitarska D, Boehm R, Debener T, Lucaciu RC, Halbwirth H. 2021. First genome edited poinsettias: targeted mutagenesis of flavonoid 3'-hydroxylase using CRISPR/Cas9 results in a colour shift. Plant Cell, Tissue and Organ Culture 147:49−60 doi: 10.1007/s11240-021-02103-5 |
| [13] |
Lu S, Wang J, Zhuge Y, Zhang M, Liu C, et al. 2021. Integrative analyses of metabolomes and transcriptomes provide insights into flavonoid variation in grape berries. Journal of agricultural and food chemistry 69:12354−67 doi: 10.1021/acs.jafc.1c02703 |
| [14] |
Zhang S, Chen Y, Zhao L, Li C, Yu J, et al. 2020. A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree Physiology 40:413−23 doi: 10.1093/treephys/tpaa004 |
| [15] |
Zhang Y, Zhou T, Dai Z, Dai X, Li W, et al. 2020. Comparative transcriptomics provides insight into floral color polymorphism in a Pleione limprichtii orchid population. International Journal of Molecular Sciences 21:247 doi: 10.3390/ijms21010247 |
| [16] |
Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, et al. 2015. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal 82:105−21 doi: 10.1111/tpj.12792 |
| [17] |
Mahmood K, Xu Z, El-Kereamy A, Casaretto JA, Rothstein SJ. 2016. The Arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses. Frontiers in Plant Science 7:1548 doi: 10.3389/fpls.2016.01548 |
| [18] |
Wang R, Ming M, Li J, Shi D, Qiao X, et al. 2017. Genome-wide identification of the MADS-box transcription factor family in pear (Pyrus bretschneideri) reveals evolution and functional divergence. PeerJ 5:e3776 doi: 10.7717/peerj.3776 |
| [19] |
An JP, Qu FJ, Yao JF, Wang XN, You CX, et al. 2017. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research 4:17023 doi: 10.1038/hortres.2017.23 |
| [20] |
Verweij W, Spelt CE, Bliek M, de Vries M, Wit N, et al. 2016. Functionally similar WRKY proteins regulate vacuolar acidification in Petunia and hair development in Arabidopsis. The Plant Cell 28:786−803 doi: 10.1105/tpc.15.00608 |
| [21] |
Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell 23:1512−22 doi: 10.1105/tpc.111.084525 |
| [22] |
Yuan YW, Rebocho AB, Sagawa JM, Stanley LE, Bradshaw HD Jr. 2016. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species. Proceedings of the National Academy of Sciences of the United States of America 113:2448−53 doi: 10.1073/pnas.1515294113 |
| [23] |
Suzuki K, Suzuki T, Nakatsuka T, Dohra H, Yamagishi M, et al. 2016. RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.). BMC Genomics 17:611 doi: 10.1186/s12864-016-2995-5 |
| [24] |
Wang Y, Zhou LJ, Wang Y, Geng Z, Ding B, et al. 2022. An R2R3-MYB transcription factor CmMYB21 represses anthocyanin biosynthesis in color fading petals of chrysanthemum. Scientia Horticulturae 293:110674 doi: 10.1016/j.scienta.2021.110674 |
| [25] |
Telias A, Kui LW, Stevenson DE, Cooney JM, Hellens RP, et al. 2011. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology 11:93 doi: 10.1186/1471-2229-11-93 |
| [26] |
Jin W, Wang H, Li M, Wang J, Yang Y, et al. 2016. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnology Journal 14:2120−33 doi: 10.1111/pbi.12568 |
| [27] |
Cavallini E, Matus JT, Finezzo L, Zenoni S, Loyola R, et al. 2015. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiology 167:1448−70 doi: 10.1104/pp.114.256172 |
| [28] |
Bai S, Tao R, Tang Y, Yin L, Ma Y, et al. 2019. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal 17:1985−97 doi: 10.1111/pbi.13114 |
| [29] |
Yao G, Ming M, Allan AC, Gu C, Li L, et al. 2017. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. The Plant Journal 92:437−51 doi: 10.1111/tpj.13666 |
| [30] |
Zhang Y, Chu G, Hu Z, Gao Q, Cui B, et al. 2016. Genetically engineered anthocyanin pathway for high health-promoting pigment production in eggplant. Molecular Breeding 36:54 doi: 10.1007/s11032-016-0454-2 |
| [31] |
Liu Y, Lin-Wang K, Espley RV, Wang L, Li Y, et al. 2019. StMYB44 negatively regulates anthocyanin biosynthesis at high temperatures in tuber flesh of potato. Journal of Experimental Botany 70:3809−24 doi: 10.1093/jxb/erz194 |
| [32] |
Wang S, Li LX, Zhang Z, Fang Y, Li D, et al. 2022. Ethylene precisely regulates anthocyanin synthesis in apple via a module comprising MdEIL1, MdMYB1, and MdMYB17. Horticulture Research 1:uhac034 doi: 10.1093/hr/uhac034 |
| [33] |
Wang S, Li L, Fang Y, Li D, Mao Z, et al. 2022. MdERF1B–MdMYC2 module integrates ethylene and jasmonic acid to regulate the biosynthesis of anthocyanin in apple. Horticulture Research 9:uhac142 doi: 10.1093/hr/uhac142 |
| [34] |
Li HL, Liu ZY, Wang XN, Han Y, You CX, et al. 2023. E3 ubiquitin ligases SINA4 and SINA11 regulate anthocyanin biosynthesis by targeting the IAA29-ARF5-1-ERF3 module in apple. Plant, Cell & Environment 46:3902−18 doi: 10.1111/pce.14709 |
| [35] |
Liu W, Mei Z, Yu L, Gu T, Li Z, et al. 2023. The ABA-induced NAC transcription factor MdNAC1 interacts with a bZIP-type transcription factor to promote anthocyanin synthesis in red-fleshed apples. Horticulture Research 10:uhad049 doi: 10.1093/hr/uhad049 |
| [36] |
An JP, Xu RR, Wang XN, Zhang XW, You CX, et a. 2024. MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple. Journal of Integrative Plant Biology 66:265−84 doi: 10.1111/jipb.13608 |
| [37] |
Li HL, Xu RR, Guo XL, Liu YJ, You CX, et al. 2024. The MdNAC72-MdABI5 module acts as an interface integrating jasmonic acid and gibberellin signals and undergoes ubiquitination-dependent degradation regulated by MdSINA2 in apple. New Phytologist 243:997−1016 doi: 10.1111/nph.19888 |
| [38] |
An JP, Zhao L, Cao YP, Ai D, Li MY, et al. 2024. The SMXL8-AGL9 module mediates crosstalk between strigolactone and gibberellin to regulate strigolactone-induced anthocyanin biosynthesis in apple. The Plant Cell 36:4404−25 doi: 10.1093/plcell/koae191 |
| [39] |
Sharma H, Sharma P, Kumar A, Chawla N, Dhatt AS. 2024. Multifaceted regulation of anthocyanin biosynthesis in plants: a comprehensive review. Journal of Plant Growth Regulation 43:3048−62 doi: 10.1007/s00344-024-11306-x |
| [40] |
Xie XB, Li S, Zhang RF, Zhao J, Chen YC, et al. 2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant, Cell & Environment 35:1884−97 doi: 10.1111/j.1365-3040.2012.02523.x |
| [41] |
Zhou LJ, Li YY, Zhang RF, Zhang CL, Xie XB, et al. 2017. The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple. Plant, Cell & Environment 40:2068−80 doi: 10.1111/pce.12978 |
| [42] |
Mao W, Han Y, Chen Y, Sun M, Feng Q, et al. 2022. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. The Plant Cell 34:1226−49 doi: 10.1093/plcell/koac006 |
| [43] |
Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, et al. 2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell & Environment 34:1176−90 doi: 10.1111/j.1365-3040.2011.02316.x |
| [44] |
Ryu S, Han JH, Cho JG, Jeong JH, Lee SK, et al. 2022. High temperature at veraison inhibits anthocyanin biosynthesis in berry skins during ripening in 'Kyoho' grapevines. Plant Physiology and Biochemistry 157:219−28 doi: 10.1016/j.plaphy.2020.10.024 |
| [45] |
Zhou Y, Wu W, Sun Y, Shen Y, Mao L, et al. 2024. Integrated transcriptome and metabolome analysis reveals anthocyanin biosynthesis mechanisms in pepper (Capsicum annuum L.) leaves under continuous blue light irradiation. BMC Plant Biology 24:210 doi: 10.1186/s12870-024-04888-x |
| [46] |
Hong Y, Tang X, Huang H, Zhang Y, Dai S. 2015. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. BMC Genomics 16:202 doi: 10.1186/s12864-015-1428-1 |
| [47] |
Zhou LJ, Wang Y, Wang Y, Song A, Jiang J, et al. 2022. Transcription factor CmbHLH16 regulates petal anthocyanin homeostasis under different lights in Chrysanthemum. Plant Physiology 190:1134−52 doi: 10.1093/plphys/kiac342 |