[1]

Wang BS, Li MG, Liao WB, Su J, Qiu HX, et al. 2005. Geographical distribution of Merremia boisiana. Ecology and Environment 14:451−54

doi: 10.16258/j.cnki.1674-5906.2005.04.034
[2]

Le BT, Nguyen TT, Adkins S. 2012. Damage caused by Merremia eberhardtii and Merremia boisiana to biodiversity of Da Nang City, Vietnam. Pakistan Journal of Weed Science Research 18:895−905

[3]

Hu L, Lin Y. 2022. How weak twining lianas adapt to competition with host tree trunks: case of Merremia boisiana. Ecology and Evolution 12:e8800

doi: 10.1002/ece3.8800
[4]

Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, et al. 2008. A large genome center's improvements to the Illumina sequencing system. Nature Methods 5:1005−10

doi: 10.1038/nmeth.1270
[5]

Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, et al. 2008. The potential and challenges of nanopore sequencing. Nature biotechnology 26:1146−53

doi: 10.1038/nbt.1495
[6]

Reiling S, Chen S, Ragoussis I. 2020. McGill Nanopore Ligation LibPrep Protocol SQK-LSK109. McGill University. doi: 10.17504/protocols.io.bpegmjbw

[7]

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560
[8]

Hu J, Wang Z, Sun Z, Hu B, Ayoola AO, et al. 2024. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads. Genome Biology 25:107

doi: 10.1186/s13059-024-03252-4
[9]

Zhou Y, Zhang J, Xiong X, Cheng ZM, Chen F. 2022. De novo assembly of plant complete genomes. Tropical Plants 1:7

doi: 10.48130/tp-2022-0007
[10]

Jassem W. 2003. Polish. Journal of the international Phonetic Association 33:103−7

doi: 10.1017/S0025100303001191
[11]

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Preprint

doi: 10.6084/M9.FIGSHARE.963153.V1
[12]

Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92−95

doi: 10.1126/science.aal3327
[13]

Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, et al. 2016. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Systems 3:99−101

doi: 10.1016/j.cels.2015.07.012
[14]

Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, et al. 2018. BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution 35:543−48

doi: 10.1093/molbev/msx319
[15]

Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, et al. 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences 117:9451−57

doi: 10.1073/pnas.1921046117
[16]

Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics 25:4.10.1−4.10.14

doi: 10.1002/0471250953.bi0410s25
[17]

Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637−44

doi: 10.1093/bioinformatics/btn013
[18]

Aggarwal G, Ramaswamy R. 2002. Ab initio gene identification: prokaryote genome annotation with GeneScan and GLIMMER. Journal of Biosciences 27:7−14

doi: 10.1007/BF02703679
[19]

Xia C, Jiang S, Tan Q, Wang W, Zhao L, et al. 2022. Chromosomal-level genome of Macadamia (Macadamia integrifolia). Tropical Plants 1:3

doi: 10.48130/tp-2022-0003
[20]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[21]

Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, et al. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology 9:R7

doi: 10.1186/gb-2008-9-1-r7
[22]

Jin J-J, Yu W-B, Yang J-B, Song Y, DePamphilis CW, et al. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21:241

doi: 10.1186/s13059-020-02154-5
[23]

Lohse M, Drechsel O, Bock R. 2007. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Current Genetics 52:267−74

doi: 10.1007/s00294-007-0161-y
[24]

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078−79

doi: 10.1093/bioinformatics/btp352
[25]

Liao Y, Smyth GK, Shi W. 2019. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic acids research 47:e47−e47

doi: 10.1093/nar/gkz114
[26]

Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20:238

doi: 10.1186/s13059-019-1832-y
[27]

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312−13

doi: 10.1093/bioinformatics/btu033
[28]

Álvarez-Carretero S, Tamuri AU, Battini M, Nascimento FF, Carlisle E, et al. 2022. A species-level timeline of mammal evolution integrating phylogenomic data. Nature 602:263−67

doi: 10.1038/s41586-021-04341-1
[29]

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74

doi: 10.1093/molbev/msu300
[30]

Mendes FK, Vanderpool D, Fulton B, Hahn MW. 2020. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36:5516−18

doi: 10.1093/bioinformatics/btaa1022
[31]

Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM. 2008. Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Research in Microbiology 159:406−14

doi: 10.1016/j.resmic.2008.03.005
[32]

Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[33]

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Research 19:1639−45

doi: 10.1101/gr.092759.109
[34]

Schranz ME, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Current Opinion in Plant Biology 15:147−53

doi: 10.1016/j.pbi.2012.03.011
[35]

He S, Dong W, Chen J, Zhang J, Lin W, et al. 2024. DataColor: unveiling biological data relationships through distinctive color mapping. Horticulture Research 11:uhad273

doi: 10.1093/hr/uhad273
[36]

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389−402

doi: 10.1093/nar/25.17.3389
[37]

Sun P, Jiao B, Yang Y, Shan L, Li T, et al. 2022. WGDI: a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Molecular Plant 15:1841−51

doi: 10.1016/j.molp.2022.10.018
[38]

Ranallo-Benavidez TR, Jaron KS, Schatz MC. 2020. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature Communications 11:1432

doi: 10.1038/s41467-020-14998-3
[39]

Ou S, Chen J, Jiang N. 2018. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic acids research 46:e126

doi: 10.1093/nar/gky730
[40]

Rhie A, Walenz BP, Koren S, Phillippy AM. 2020. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biology 21:245

doi: 10.1186/s13059-020-02134-9
[41]

Li M, Yang S, Xu W, Pu Z, Feng J, et al. 2019. The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development. BMC Plant Biology 19:119

doi: 10.1186/s12870-019-1708-z
[42]

Sun G, Xu Y, Liu H, Sun T, Zhang J, et al. 2018. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nature communications 9:2683

doi: 10.1038/s41467-018-04721-8
[43]

Hu H, Sun P, Yang Y, Ma J, Liu J. 2023. Genome-scale angiosperm phylogenies based on nuclear, plastome, and mitochondrial datasets. Journal of Integrative Plant Biology 65:1479−89

doi: 10.1111/jipb.13455
[44]

Sudmoon R, Kaewdaungdee S, Ho HX, Lee SY, Tanee T, et al. 2024. The chloroplast genome sequences of Ipomoea alba and I. obscura (Convolvulaceae): genome comparison and phylogenetic analysis. Scientific Reports 14:14078

doi: 10.1038/s41598-024-64879-8
[45]

Park I, Yang S, Kim WJ, Noh P, Lee HO, et al. 2018. The complete chloroplast genomes of six Ipomoea species and indel marker development for the discrimination of authentic Pharbitidis Semen (Seeds of I. nil or I. purpurea). Frontiers in Plant Science 9:965

doi: 10.3389/fpls.2018.00965
[46]

Chen B, Wang R, Huang X, Zhou L. 2005. Merremia boisiana-a newly recorded species from Guangdong. Journal of Tropical and Subtropical Botany 13:76−77

[47]

Huang Q, Qiao H, Shen Y, SY, Li X, Fan Z. 2015. Spread, invasion and implications for management of Mikania micrantha and Merremia boisiana in the Hainan Island. Asian-Pacific Weed Science Society Conference, Hyderabad, India, 13-16 October, 2015

[48]

Lian J, Cao H, Wang Z, Li J, Ye W, et al. 2007. The community characteristics for invading damage of the forest killer Merremia boisiana. Guihaia 27(3):482−86

[49]

Liang B, Zhou Y, Liu T, Wang M, Liu Y, et al. 2024. Genome reannotation of the sweetpotato (Ipomoea batatas (L.) Lam.) using extensive Nanopore and Illumina-based RNA-seq datasets. Tropical Plants 3:e008

doi: 10.48130/tp-0024-0009
[50]

Mano Y, Nemoto K. 2012. The pathway of auxin biosynthesis in plants. Journal of Experimental Botany 63:2853−72

doi: 10.1093/jxb/ers091
[51]

Lefevere H, Bauters L, Gheysen G. 2020. Salicylic acid biosynthesis in plants. Frontiers in Plant Science 11:338

doi: 10.3389/fpls.2020.00338
[52]

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62:25−54

doi: 10.1111/jipb.12899
[53]

Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J, et al. 2018. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nature Communications 9:2515

doi: 10.1038/s41467-018-04344-z
[54]

Neumann P, Oliveira L, Jang TS, Novák P, Koblížková A, et al. 2023. Disruption of the standard kinetochore in holocentric Cuscuta species. Proceedings of the National Academy of Sciences of the United States of America 120:e2300877120

doi: 10.1073/pnas.2300877120
[55]

Hao Y, Bao W, Li G, Gagoshidze Z, Shu H, et al. 2021. The chromosome-based genome provides insights into the evolution in water spinach. Scientia Horticulturae 289:110501

doi: 10.1016/j.scienta.2021.110501
[56]

Yang J, Moeinzadeh MH, Kuhl H, Helmuth J, Xiao P, et al. 2017. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nature Plants 3:696−703

doi: 10.1038/s41477-017-0002-z
[57]

Yan M, Nie H, Wang Y, Wang X, Jarret R, et al. 2022. Exploring and exploiting genetics and genomics for sweetpotato improvement: Status and perspectives. Plant communications 3:100332

doi: 10.1016/j.xplc.2022.100332
[58]

Huang Q, Shen Y, Li X, Zhang G, Huang D, et al. 2015. Effects of light and water availability on the morphology and allelopathy of the native outbreak species Merremia boisiana (Gagnep.) Oostr. Chinese Journal of Ecology 34:438

doi: 10.13292/j.1000-4890.2015.0062
[59]

Huang Q, Shen Y, Li X, Fan Z, Li M, et al. 2013. Native expanding Merremia boisiana is not more allelopathic than its non-expanding congener M. vitifolia in the expanded range in Hainan. American Journal of Plant Sciences 4(4):774-79

[60]

Zhang P. 2022. Tropical crops enter the era of genome editing. Tropical Plants 1:10

doi: 10.48130/tp-2022-0010
[61]

Dong C, Xi Y, Satheesh V, Lei M. 2023. Advances in CRISPR/Cas technologies and their application in plants. Tropical Plants 2:2−10

doi: 10.48130/tp-2023-0002