[1]

Sofowora A, Ogunbodede E, Onayade A. 2013. The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary, and Alternative Medicines. M 10:210−29

doi: 10.4314/ajtcam.v10i5.2
[2]

Chen SL, Yu H, Luo HM, Wu Q, Li CF, et al. 2016. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Medicine 11:37

doi: 10.1186/s13020-016-0108-7
[3]

Sharanabasappa GK, Santosh MK, Shaila D, Seetharam YN, Sanjeevarao I. 2007. Phytochemical studies on Bauhinia racemosa lam. Bauhinia purpurea Linn. and hardwickia binata roxb. Journal of Chemistry 4:21−31

doi: 10.1155/2007/874721
[4]

Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215−33

doi: 10.1016/j.cell.2009.01.002
[5]

Zhan J, Meyers BC. 2023. Plant small RNAs: their biogenesis, regulatory roles, and functions. Annual Review of Plant Biology 74:21−51

doi: 10.1146/annurev-arplant-070122-035226
[6]

Jiang Y, Liu C, He G, Zhang Y, Liu M, et al. 2024. Regulation of ginseng adventitious root growth in Panax ginseng by the miR156-targeted PgSPL24-09 transcription factors. Plant Physiology and Biochemistry 215:10

doi: 10.1016/j.plaphy.2024.109026
[7]

Zheng X, Li H, Chen M, Zhang J, Tan R, et al. 2020. smi-miR396b targeted SmGRFs, SmHDT1, and SmMYB37/4 synergistically regulates cell growth and active ingredient accumulation in Salvia miltiorrhiza hairy roots. Plant Cell Reports 39:1263−83

doi: 10.1007/s00299-020-02562-8
[8]

Xing H, Li Y, Ren Y, Zhao Y, Wu X, et al. 2022. Genome-wide investigation of microRNAs and expression profiles during rhizome development in ginger (Zingiber officinale Roscoe). BMC Genomics 23:49

doi: 10.1186/s12864-021-08273-y
[9]

Singh N, Sharma A. 2017. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways. Comptes Rendus Biologies 340:481−91

doi: 10.1016/j.crvi.2017.09.009
[10]

Xu W, Fan H, Pei X, Hua X, Xu T, et al. 2023. mRNA-Seq and miRNA-Seq analyses provide insights into the mechanism of Pinellia ternata bulbil initiation induced by phytohormones. Genes 14(9):1727

doi: 10.3390/genes14091727
[11]

Wu Q, Chen Y, Bi W, Tong B, Wang A, et al. 2025. Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots. Plant Physiology and Biochemistry 220:109510

doi: 10.1016/j.plaphy.2025.109510
[12]

Yang H, Liu Z, Yu C, Song C, Wang C. 2023. Expression relationship between microRNA and transcription factors in Stephania japonica. Medicinal Plant Biology 2:7

doi: 10.48130/mpb-2023-0007
[13]

Padhan JK, Kumar P, Sood H, Chauhan RS. 2016. Prospecting NGS-transcriptomes to assess regulation of miRNA-mediated secondary metabolites biosynthesis in Swertia chirayita, a medicinal herb of the North-Western Himalayas. Medicinal Plants - International Journal of Phytomedicines and Related Industries 8:219−28

doi: 10.5958/0975-6892.2016.00029.0
[14]

Li M, Tian X, Mustafa G, Chen Y, Shan L, et al. 2024. Involvement of miRNAs regulation on both flower development and secondary metabolism in Lonicera japonica Thunb. Environmental and Experimental Botany 218:105569

doi: 10.1016/j.envexpbot.2023.105569
[15]

Li Q, Zhang Z, Li K, Zhu Y, Sun K, et al. 2024. Identification of microRNAs and their target genes associated with chasmogamous and cleistogamous flower development in Viola prionantha. Planta 259:116

doi: 10.1007/s00425-024-04398-y
[16]

Zeng S, Liu Y, Pan L, Hayward A, Wang Y. 2015. Identification and characterization of miRNAs in ripening fruit of Lycium barbarum L. using high-throughput sequencing. Frontiers in Plant Science 6:778

doi: 10.3389/fpls.2015.00778
[17]

Pérez-Quintero AL, Sablok G, Tatarinova TV, Conesa A, Kuo J, López C. 2012. Mining of miRNAs and potential targets from gene oriented clusters of transcripts sequences of the anti-malarial plant, Artemisia annua. Biotechnology Letters 34:737−45

doi: 10.1007/s10529-011-0808-0
[18]

Cao J, Chen Z, Wang L, Yan N, Lin J, et al. 2024. Graphene enhances artemisinin production in the traditional medicinal plant Artemisia annua via dynamic physiological processes and miRNA regulation. Plant Communications 5:100742

doi: 10.1016/j.xplc.2023.100742
[19]

Guo Z, Hao K, Lv Z, Yu L, Bu Q, et al. 2023. Profiling of phytohormone-specific microRNAs and characterization of the miR160-ARF1 module involved in glandular trichome development and artemisinin biosynthesis in Artemisia annua. Plant Biotechnology Journal 21:591−605

doi: 10.1111/pbi.13974
[20]

Kumar P, Padhan JK, Kumar A, Chauhan RS. 2018. Transcriptomes of Podophyllum hexandrum unravel candidate miRNAs and their association with the biosynthesis of secondary metabolites. Journal of Plant Biochemistry and Biotechnology 27:46−54

doi: 10.1007/s13562-017-0414-x
[21]

Boke H, Ozhuner E, Turktas M, Parmaksiz I, Ozcan S, et al. 2015. Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnology Journal 13:409−420

doi: 10.1111/pbi.12346
[22]

Ding Y, Mao Y, Cen Y, Hu L, Su Y, et al. 2021. Small RNA sequencing reveals various microRNAs involved in piperine biosynthesis in black pepper (Piper nigrum L.). BMC Genomics 22:838

doi: 10.1186/s12864-021-08154-4
[23]

Shen EM, Singh SK, Ghosh JS, Patra B, Paul P, et al. 2017. The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis. Scientific reports 7:43027

doi: 10.1038/srep43027
[24]

Pani A, Mahapatra RK. 2013. Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags. Genomics Data 1:2−6

doi: 10.1016/j.gdata.2013.06.001
[25]

Hao DC, Yang L, Xiao PG, Liu M. 2012. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiologia Plantarum 146:388−403

doi: 10.1111/j.1399-3054.2012.01668.x
[26]

Jin Q, Wang Z, Sandhu D, Chen L, Shao C, et al. 2024. mRNA-miRNA analyses reveal the involvement of CsbHLH1 and miR1446a in the regulation of caffeine biosynthesis in Camellia sinensis. Horticulture Research 11:uhad282

doi: 10.1093/hr/uhad282
[27]

Liu J, Yuan Y, Wang Y, Jiang C, Chen T, et al. 2017. Regulation of fatty acid and flavonoid biosynthesis by miRNAs in Lonicera japonica. RSC Advances 7:35426−37

doi: 10.1039/C7RA05800D
[28]

Yang Y, Guo J, Cheng J, Jiang Z, Xu N, et al. 2020. Identification of UV-B radiation responsive microRNAs and their target genes in chrysanthemum (Chrysanthemum morifolium Ramat) using high-throughput sequencing. Industrial Crops and Products 151:112484

doi: 10.1016/j.indcrop.2020.112484
[29]

Yang J, Lu X, Hu S, Yang X, Cao X. 2024. microRNA858 represses the transcription factor gene SbMYB47 and regulates flavonoid biosynthesis in Scutellaria baicalensis. Plant Physiology 197:kiae607

doi: 10.1093/plphys/kiae607
[30]

Zhu B, Wang M, Pang Y, Hu X, Sun C, et al. 2024. The Smi-miR858a-SmMYB module regulates tanshinone and phenolic acid biosynthesis in Salvia miltiorrhiza. Horticulture Research 11:uhae047

doi: 10.1093/hr/uhae047
[31]

Zhou H, Jiang M, Li J, Xu Y, Li C, Lu S. 2024. Genome-wide identification and functional analysis of Salvia miltiorrhiza microRNAs reveal the negative regulatory role of smi-miR159a in phenolic acid biosynthesis. International Journal of Molecular Science 25:5148

doi: 10.3390/ijms25105148
[32]

Khan S, Ali A, Saifi M, Saxena P, Ahlawat S, et al. 2020. Identification and the potential involvement of miRNAs in the regulation of artemisinin biosynthesis in A. annua. Scientific Reports 10:13614

doi: 10.1038/s41598-020-69707-3
[33]

Xu P, Li Q, Liang W, Hu Y, Chen R, et al. 2023. A tissue-specific profile of miRNAs and their targets related to paeoniaflorin and monoterpenoids biosynthesis in Paeonia lactiflora Pall. by transcriptome, small RNAs and degradome sequencing. Plos one 18:e0279992

doi: 10.1371/journal.pone.0279992
[34]

Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH, et al. 2015. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Molecular Plant 8:98−110

doi: 10.1016/j.molp.2014.11.002
[35]

Sharma T, Sharma NK, Kumar P, Panzade G, Rana T, et al. 2021. The first draft genome of Picrorhiza kurrooa, an endangered medicinal herb from Himalayas. Scientific Reports 11:14944

doi: 10.1038/s41598-021-93495-z
[36]

Lian C, Zhang F, Yang H, Zhang X, Lan J, et al. 2024. Multi-omics analysis of small RNA, transcriptome, and degradome to identify putative miRNAs linked to MeJA regulated and oridonin biosynthesis in Isodon rubescens. International Journal of Biological Macromolecules 258:129123

doi: 10.1016/j.ijbiomac.2023.129123
[37]

Ye J, Zhang X, Tan J, Xu F, Cheng S, et al. 2020. Global identification of Ginkgo biloba microRNAs and insight into their role in metabolism regulatory network of terpene trilactones by high-throughput sequencing and degradome analysis. Industrial Crops and Products 148:112289

doi: 10.1016/j.indcrop.2020.112289
[38]

Run W, Li T, Wang S, Xiao S, Wu Y, et al. 2025. Methyl jasmonate induces the regulation of protostane triterpene biosynthesis by microRNAs in Alisma orientale. Protoplasma

doi: 10.1007/s00709-024-02029-7
[39]

Wang W, Liu X, Zhu Y, Zhu J, Liu C, et al. 2024. Identification of miRNA858 long-loop precursors in seed plants. The Plant Cell 36:1637−54

doi: 10.1093/plcell/koad315
[40]

Li C, Qiu X, Hou X, Li D, Jiang M, et al. 2025. Polymerization of proanthocyanidins under the catalysis of miR397a-regulated laccases in Salvia miltiorrhiza and Populus trichocarpa. Nature Communications 16:1513

doi: 10.1038/s41467-025-56864-0
[41]

Zhang L, Hou D, Chen X, Li D, Zhu L, et al. 2012. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research 22:107−26

doi: 10.1038/cr.2011.158
[42]

Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, et al. 2016. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Research 26:217−28

doi: 10.1038/cr.2016.13
[43]

Zhou Z, Li X, Liu J, Dong L, Chen Q, et al. 2015. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Research 25:39−49

doi: 10.1038/cr.2014.130
[44]

Qiao X, Huang F, Shi X, Deng X, Zhang C, et al. 2023. Herbal small RNAs in patients with COVID-19 linked to reduced DEG expression. Science China Life Sciences 66:1280−89

doi: 10.1007/s11427-022-2225-3
[45]

Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut–dip–budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4:100345

doi: 10.1016/j.xinn.2022.100345
[46]

Zheng X, Tang X, Wu Y, Zheng X, Zhou J, et al. 2025. An efficient CRISPR-Cas12a-mediated MicroRNA knockout strategy in plants. Plant Biotechnology Journal 23:128−40

doi: 10.1111/pbi.14484