| [1] |
Hartnett ME, Penn JS. 2012. Mechanisms and management of retinopathy of prematurity. New England Journal of Medicine 367:2515−26 doi: 10.1056/NEJMra1208129 |
| [2] |
Hellström A, Smith LE, Dammann O. 2013. Retinopathy of prematurity. The lancet 382:1445−57 doi: 10.1016/S0140-6736(13)60178-6 |
| [3] |
Schaffer DB, Palmer EA, Plotsky DF, Metz HS, Flynn JT, et al. 1993. Prognostic factors in the natural course of retinopathy of prematurity. Ophthalmology 100:230−37 doi: 10.1016/S0161-6420(93)31665-9 |
| [4] |
Yu H, Yuan L, Zou Y, Peng L, Wang Y, et al. 2014. Serum concentrations of cytokines in infants with retinopathy of prematurity. APMIS 122:818−23 doi: 10.1111/apm.12223 |
| [5] |
Bancalari A, Schade R. 2022. Update in the Treatment of Retinopathy of Prematurity. American Journal of Perinatology 39:22−30 doi: 10.1055/s-0040-1713181 |
| [6] |
Hartnett ME, Stahl A. 2023. Laser versus Anti-VEGF: A Paradigm Shift for Treatment-Warranted Retinopathy of Prematurity. Ophthalmology and Therapy 12:2241−52 doi: 10.1007/s40123-023-00744-7 |
| [7] |
Houston SK, Wykoff CC, Berrocal AM, Hess DJ, Murray TG. 2013. Laser treatment for retinopathy of prematurity. Lasers in Medical Science 28:683−92 doi: 10.1007/s10103-011-1021-z |
| [8] |
Takano F, Ueda K, Yamada-Nakanishi Y, Nakamura M. 2024. Comparison of Single-Treatment Efficacy of Bevacizumab and Ranibizumab for Retinopathy of Prematurity. Children 11:927 doi: 10.3390/children11080927 |
| [9] |
Hartnett ME. 2020. Retinopathy of Prematurity: Evolving Treatment With Anti-Vascular Endothelial Growth Factor. Am J Ophthalmol 218:208−13 doi: 10.1016/j.ajo.2020.05.025 |
| [10] |
Tran KD, Cernichiaro-Espinosa LA, Berrocal AM. 2018. Management of Retinopathy of Prematurity-Use of Anti-VEGF Therapy. Asia-Pacific Journal of Ophthalmology 7:56−62 doi: 10.22608/APO.2017436 |
| [11] |
Mintz-Hittner HA, Kennedy KA, Chuang AZ. 2011. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. New England Journal of Medicine 364:603−15 doi: 10.1056/NEJMoa1007374 |
| [12] |
Martínez-Castellanos MA, Ortiz-Ramirez GY. 2021. Surgery for stage 5 retinopathy of prematurity. Current Opinion in Ophthalmology 32:482−88 doi: 10.1097/ICU.0000000000000795 |
| [13] |
Papageorgiou E, Riri K, Kardaras D, Grivea I, Mataftsi A, et al. 2022. Scleral buckling surgery for stage 4A and 4B retinopathy of prematurity in critically ill neonates. International Ophthalmology 42:1093−100 doi: 10.1007/s10792-021-02095-3 |
| [14] |
Wu Q, Hu Y, Mo Z, Wu R, Zhang X, et al. 2022. Development and Validation of a Deep Learning Model to Predict the Occurrence and Severity of Retinopathy of Prematurity. JAMA Network Open 5:e2217447 doi: 10.1001/jamanetworkopen.2022.17447 |
| [15] |
Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, et al. 2009. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nature protocols 4:1565−73 doi: 10.1038/nprot.2009.187 |
| [16] |
Grossniklaus HE, Kang SJ, Berglin L. 2010. Animal models of choroidal and retinal neovascularization. Progress in Retinal and Eye Research 29:500−19 |
| [17] |
Selvam S, Kumar T, Fruttiger M. 2018. Retinal vasculature development in health and disease. Progress in Retinal and Eye Research 63:1−19 |
| [18] |
Melecchi A, Canovai A, Amato R, Dal Monte M, Filippi L, et al. 2024. Agonism of β3-Adrenoceptors Inhibits Pathological Retinal Angiogenesis in the Model of Oxygen-Induced Retinopathy. Investigative Ophthalmology & Visual Science 65:34 doi: 10.1167/iovs.65.10.34 |
| [19] |
Bisen S, Verma SK, Mukhopadhyay CS, Singh NK. 2024. A neutrophil elastase-generated mature form of IL-33 is a potent regulator of endothelial cell activation and proliferative retinopathy. Experimental & Molecular Medicine 56:1703−16 doi: 10.1038/s12276-024-01279-y |
| [20] |
Elbedwehy AM, Wu J, Na HK, Baek A, Jung H, et al. 2024. ROS-responsive charge reversal mesoporous silica nanoparticles as promising drug delivery system for neovascular retinal diseases. Journal of Controlled Release 373:224−39 doi: 10.1016/j.jconrel.2024.07.022 |
| [21] |
Hu J, Song X, He YQ, Freeman C, Parish CR, et al. 2012. Heparanase and vascular endothelial growth factor expression is increased in hypoxia-induced retinal neovascularization. Investigative Ophthalmology & Visual Science 53:6810−17 doi: 10.1167/iovs.11-9144 |
| [22] |
Alon T, Hemo I, Itin A, Pe'er J, Stone J, et al. 1995. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Medicine 1:1024−28 doi: 10.1038/nm1095-1024 |
| [23] |
Yamada H, Yamada E, Hackett SF, Ozaki H, Okamoto N, et al. 1999. Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. Journal of cellular physiology 179:149−56 doi: 10.1002/(SICI)1097-4652(199905)179:2<149::AID-JCP5>3.0.CO;2-2 |
| [24] |
Gu X, El-Remessy AB, Brooks SE, Al-Shabrawey M, Tsai NT, et al. 2003. Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite. American Journal of Physiology-Cell Physiology 285:C546−C54 doi: 10.1152/ajpcell.00424.2002 |
| [25] |
Suzumura A, Terao R, Kaneko H. 2020. Protective effects and molecular signaling of n-3 fatty acids on oxidative stress and inflammation in retinal diseases. Antioxidants 9:920 doi: 10.3390/antiox9100920 |
| [26] |
Ninchoji T, Love DT, Smith RO, Hedlund M, Vestweber D, et al. 2021. eNOS-induced vascular barrier disruption in retinopathy by c-Src activation and tyrosine phosphorylation of VE-cadherin. eLife 10:e64944 doi: 10.7554/eLife.64944 |
| [27] |
Smith TL, Oubaha M, Cagnone G, Boscher C, Kim JS, et al. 2022. eNOS controls angiogenic sprouting and retinal neovascularization through the regulation of endothelial cell polarity. Cellular and Molecular Life Sciences 79:37 doi: 10.1007/s00018-021-04042-y |
| [28] |
Zhu G, Lin Y, Liu H, Jiang D, Singh S, et al. 2018. Dll4-Notch1 signaling but not VEGF-A is essential for hyperoxia induced vessel regression in retina. Biochemical and Biophysical Research Communications 507:400−6 doi: 10.1016/j.bbrc.2018.11.051 |
| [29] |
Wang L, Shi P, Xu Z, Li J, Xie Y, et al. 2014. Up-regulation of VEGF by retinoic acid during hyperoxia prevents retinal neovascularization and retinopathy. Investigative Ophthalmology & Visual Science 55:4276−87 doi: 10.1167/iovs.14-14170 |
| [30] |
Ozaki NK, Beharry KD, Nishihara KC, Akmal Y, Ang JG, et al. 2002. Regulation of retinal vascular endothelial growth factor and receptors in rabbits exposed to hyperoxia. Investigative Ophthalmology & Visual Science 43:1546−57 |
| [31] |
Stellmach V, Crawford SE, Zhou W, Bouck N. 2001. Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor. Proceedings of the National Academy of Sciences of the United States of America 98:2593−97 doi: 10.1073/pnas.031252398 |
| [32] |
Huang Q, Wang S, Sorenson CM, Sheibani N. 2008. PEDF-deficient mice exhibit an enhanced rate of retinal vascular expansion and are more sensitive to hyperoxia-mediated vessel obliteration. Experimental Eye Research 87:226−41 doi: 10.1016/j.exer.2008.06.003 |
| [33] |
Calzi SL, Shaw LC, Moldovan L, Shelley WC, Qi X, et al. 2019. Progenitor cell combination normalizes retinal vascular development in the oxygen-induced retinopathy (OIR) model. JCI Insight 4:e129224 doi: 10.1172/jci.insight.129224 |
| [34] |
Wang Yn, Gao S, Gao S, Li N, Xie B, et al. 2021. Blocking the interaction between interleukin-17A and endoplasmic reticulum stress in macrophage attenuates retinal neovascularization in oxygen-induced retinopathy. Cell & Bioscience 11:82 doi: 10.1186/s13578-021-00593-6 |
| [35] |
Liu CQ, Liu XY, Ouyang PW, Liu Q, Huang XM, et al. 2023. Ferrostatin-1 attenuates pathological angiogenesis in oxygen-induced retinopathy via inhibition of ferroptosis. Experimental eye research 226:109347 doi: 10.1016/j.exer.2022.109347 |
| [36] |
Santos AM, Calvente R, Tassi M, Carrasco MC, Martín-Oliva D, et al. 2008. Embryonic and postnatal development of microglial cells in the mouse retina. Journal of Comparative Neurology 506:224−39 doi: 10.1002/cne.21538 |
| [37] |
Li F, Jiang D, Samuel MA. 2019. Microglia in the developing retina. Neural Development 14:12 doi: 10.1186/s13064-019-0137-x |
| [38] |
Han X, Chen X, Chen S, Luo Q, Liu X, et al. 2020. Tetramethylpyrazine attenuates endotoxin-induced retinal inflammation by inhibiting microglial activation via the TLR4/NF-κB signalling pathway. Biomedicine & Pharmacotherapy 128:110273 doi: 10.1016/j.biopha.2020.110273 |
| [39] |
Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S. 2006. Potential role of microglia in retinal blood vessel formation. Investigative Ophthalmology & Visual Science 47:3595−602 doi: 10.1167/iovs.05-1522 |
| [40] |
Hu A, Schmidt MHH, Heinig N. 2024. Microglia in retinal angiogenesis and diabetic retinopathy. Angiogenesis 27:311−31 doi: 10.1007/s10456-024-09911-1 |
| [41] |
Xu W, Hu Z, Lv Y, Dou G, Zhang Z, et al. 2018. Microglial density determines the appearance of pathological neovascular tufts in oxygen-induced retinopathy. Cell and Tissue Research 374:25−38 doi: 10.1007/s00441-018-2847-5 |
| [42] |
Zhao C, Liu Y, Meng J, Wang X, Liu X, et al. 2022. LGALS3BP in microglia promotes retinal angiogenesis through PI3K/AKT pathway during hypoxia. Investigative Ophthalmology & Visual Science 63:25 doi: 10.1167/iovs.63.8.25 |
| [43] |
He C, Liu Y, Huang Z, Yang Z, Zhou T, et al. 2021. A specific RIP3+ subpopulation of microglia promotes retinopathy through a hypoxia-triggered necroptotic mechanism. Proceedings of the National Academy of Sciences of the United States of America 118:e2023290118 doi: 10.1073/pnas.2023290118 |
| [44] |
Li J, Yu S, Lu X, Cui K, Tang X, et al. 2021. The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice. Inflammation Research 70:183−92 doi: 10.1007/s00011-020-01427-w |
| [45] |
Usui-Ouchi A, Eade K, Giles S, Ideguchi Y, Ouchi Y, et al. 2022. Deletion of Tgfβ signal in activated microglia prolongs hypoxia-induced retinal neovascularization enhancing Igf1 expression and retinal leukostasis. Glia 70:1762−76 doi: 10.1002/glia.24218 |
| [46] |
Luo Q, Jiang Z, Jiang J, Wan L, Li Y, et al. 2023. Tsp-1+ microglia attenuate retinal neovascularization by maintaining the expression of Smad3 in endothelial cells through exosomes with decreased miR-27a-5p. Theranostics 13:3689−706 doi: 10.7150/thno.84236 |
| [47] |
Chen X, Wang X, Cui Z, Luo Q, Jiang Z, et al. 2023. M1 microglia-derived exosomes promote activation of resting microglia and amplifies proangiogenic effects through Irf1/miR-155-5p/Socs1 axis in the retina. International Journal of Biological Sciences 19:1791−812 doi: 10.7150/ijbs.79784 |
| [48] |
Green KN, Crapser JD, Hohsfield LA. 2020. To kill a microglia: a case for CSF1R inhibitors. Trends in Immunology 41:771−84 doi: 10.1016/j.it.2020.07.001 |
| [49] |
Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, et al. 2019. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. Nature Communications 10:3758 doi: 10.1038/s41467-019-11674-z |
| [50] |
Liu YJ, Spangenberg EE, Tang B, Holmes TC, Green KN, et al. 2021. Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex. Journal of Neuroscience 41:1274−87 doi: 10.1523/JNEUROSCI.2140-20.2020 |
| [51] |
Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, et al. 2017. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight 2:e91229 doi: 10.1172/jci.insight.91229 |
| [52] |
Church KA, Rodriguez D, Mendiola AS, Vanegas D, Gutierrez IL, et al. 2023. Pharmacological depletion of microglia alleviates neuronal and vascular damage in the diabetic CX3CR1-WT retina but not in CX3CR1-KO or hCX3CR1I249/M280-expressing retina. Frontiers in Immunology 14:1130735 doi: 10.3389/fimmu.2023.1130735 |
| [53] |
Zhou Z, Jing Y, Niu Y, Chang T, Sun J, et al. 2022. Distinguished functions of microglia in the two stages of oxygen-induced retinopathy: a novel target in the treatment of ischemic retinopathy. Life 12:1676 doi: 10.3390/life12101676 |
| [54] |
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9:676−82 doi: 10.1038/nmeth.2019 |
| [55] |
Zudaire E, Gambardella L, Kurcz C, Vermeren S. 2011. A computational tool for quantitative analysis of vascular networks. PLOS ONE 6:e27385 doi: 10.1371/journal.pone.0027385 |
| [56] |
Young KF, Gardner R, Sariana V, Whitman SA, Bartlett MJ, et al. 2021. Can quantifying morphology and TMEM119 expression distinguish between microglia and infiltrating macrophages after ischemic stroke and reperfusion in male and female mice? Journal of Neuroinflammation 18:58 doi: 10.1186/s12974-021-02105-2 |
| [57] |
Nugent AA, Lin K, van Lengerich B, Lianoglou S, Przybyla L, et al. 2020. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105:837−854.e9 doi: 10.1016/j.neuron.2019.12.007 |
| [58] |
Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, et al. 2017. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566−581.e9 doi: 10.1016/j.immuni.2017.08.008 |
| [59] |
Grubman A, Choo XY, Chew G, Ouyang JF, Sun G, et al. 2021. Transcriptional signature in microglia associated with Aβ plaque phagocytosis. Nature Communications 12:3015 doi: 10.1038/s41467-021-23111-1 |
| [60] |
Sun N, Victor MB, Park YP, Xiong X, Scannail AN, et al. 2023. Human microglial state dynamics in Alzheimer's disease progression. Cell 186:4386−4403.e29 doi: 10.1016/j.cell.2023.08.037 |
| [61] |
Dejanovic B, Wu T, Tsai MC, Graykowski D, Gandham VD, et al. 2022. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer's disease mouse models. Nature Aging 2:837−50 doi: 10.1038/s43587-022-00281-1 |
| [62] |
Kokkosis AG, Madeira MM, Hage Z, Valais K, Koliatsis D, et al. 2024. Chronic psychosocial stress triggers microglial-/macrophage-induced inflammatory responses leading to neuronal dysfunction and depressive-related behavior. Glia 72:111−32 doi: 10.1002/glia.24464 |
| [63] |
Thi Lai T, Kim YE, Nguyen LTN, Thi Nguyen T, Kwak IH, et al. 2024. Microglial inhibition alleviates alpha-synuclein propagation and neurodegeneration in Parkinson's disease mouse model. NPJ Parkinson's Disease 10:32 doi: 10.1038/s41531-024-00640-2 |
| [64] |
Montilla A, Zabala A, Er-Lukowiak M, Rissiek B, Magnus T, et al. 2023. Microglia and meningeal macrophages depletion delays the onset of experimental autoimmune encephalomyelitis. Cell Death & Disease 14:16 doi: 10.1038/s41419-023-05551-3 |
| [65] |
Mou Q, Yao K, Ye M, Zhao B, Hu Y, et al. 2021. Modulation of sirt1-mTORC1 pathway in microglia attenuates retinal ganglion cell loss after optic nerve injury. Journal of Inflammation Research 14:6857−69 doi: 10.2147/JIR.S338815 |
| [66] |
Church KA, Rodriguez D, Vanegas D, Gutierrez IL, Cardona SM, et al. 2022. Models of microglia depletion and replenishment elicit protective effects to alleviate vascular and neuronal damage in the diabetic murine retina. Journal of Neuroinflammation 19:300 doi: 10.1186/s12974-022-02659-9 |
| [67] |
Cheng Y, Javonillo DI, Pachow C, Scarfone VM, Fernandez K, et al. 2023. Ablation of microglia following infection of the central nervous system with a neurotropic murine coronavirus infection leads to increased demyelination and impaired remyelination. Journal of Neuroimmunology 381:578133 doi: 10.1016/j.jneuroim.2023.578133 |
| [68] |
Brown FN, Iwasawa E, Shula C, Fugate EM, Lindquist DM, et al. 2023. Early postnatal microglial ablation in the Ccdc39 mouse model reveals adverse effects on brain development and in neonatal hydrocephalus. Fluids and Barriers of the CNS 20:42 doi: 10.1186/s12987-023-00433-4 |
| [69] |
von Arx AS, Dawson K, Lin HY, Mattei D, Notter T, et al. 2023. Prefrontal microglia deficiency during adolescence disrupts adult cognitive functions and synaptic structures: a follow-up study in female mice. Brain, Behavior, and Immunity 111:230−46 doi: 10.1016/j.bbi.2023.04.007 |
| [70] |
Sariol A, Mackin S, Allred MG, Ma C, Zhou Y, et al. 2020. Microglia depletion exacerbates demyelination and impairs remyelination in a neurotropic coronavirus infection. Proceedings of the National Academy of Sciences of the United States of America 117:24464−74 doi: 10.1073/pnas.2007814117 |
| [71] |
Ye L, Shu S, Jia J, Sun M, Xu S, et al. 2023. Absent in melanoma 2 mediates aging-related cognitive dysfunction by acting on complement-dependent microglial phagocytosis. Aging Cell 22:e13860 doi: 10.1111/acel.13860 |
| [72] |
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, et al. 2023. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nature Medicine 29:2866−84 doi: 10.1038/s41591-023-02566-3 |
| [73] |
Zhou ZY, Chang TF, Lin ZB, Jing YT, Wen LS, et al. 2023. Microglial Galectin3 enhances endothelial metabolism and promotes pathological angiogenesis via Notch inhibition by competitively binding to Jag1. Cell Death & Disease 14:380 doi: 10.1038/s41419-023-05897-8 |
| [74] |
Gedam M, Comerota MM, Propson NE, Chen T, Jin F, et al. 2023. Complement C3aR depletion reverses HIF-1α-induced metabolic impairment and enhances microglial response to Aβ pathology. Journal of Clinical Investigation 133:e167501 doi: 10.1172/JCI167501 |
| [75] |
Tabor SJ, Yuda K, Deck J, Gnanaguru G, Connor KM. 2023. Retinal injury activates complement expression in Müller cells leading to neuroinflammation and photoreceptor cell death. Cells 12:1754 doi: 10.3390/cells12131754 |