[1]

Food and Agriculture Organization. 2022. Food and Agriculture Organization Corporate Statistical Database. www.fao.org/faostat/en/#data/QCL

[2]

National Bureau of Statistics of the People's Republic of China. 2022. China Statistical Yearbook. www.stats.gov.cn/english

[3]

Asma U, Morozova K, Ferrentino G, Scampicchio M. 2023. Apples and apple by-products: antioxidant properties and food applications. Antioxidants 12(7):1456

doi: 10.3390/antiox12071456
[4]

Asif M, Javaid T, Razzaq ZU, Khan MKI, Maan AA, et al. 2024. Sustainable utilization of apple pomace and its emerging potential for development of functional foods. Environmental Science and Pollution Research 31(12):17932−50

doi: 10.1007/s11356-023-28479-9
[5]

Tomita S, Nemoto T, Matsuo Y, Shoji T, Tanaka F, et al. 2015. A NMR-based, non-targeted multistep metabolic profiling revealed l-rhamnitol as a metabolite that characterised apples from different geographic origins. Food Chemistry 174:163−72

doi: 10.1016/j.foodchem.2014.11.028
[6]

Vermathen M, Marzorati M, Baumgartner D, Good C, Vermathen P. 2011. Investigation of different apple cultivars by high resolution magic angle spinning NMR. A feasibility study. Journal of Agricultural and Food Chemistry 59:12784−93

doi: 10.1021/jf203733u
[7]

Li Y, Sun H, Li J, Qin S, Yang W, et al. 2021. Effects of genetic background and altitude on sugars, malic acid and ascorbic acid in fruits of wild and cultivated apples (Malus sp.). Foods 10:10122950

doi: 10.3390/foods10122950
[8]

Belton PS, Colquhoun IJ, Kemsley EK, Delgadillo I, Roma P, et al. 1998. Application of chemometrics to the 1H NMR spectra of apple juices: discrimination between apple varieties. Food Chemistry 61(1-2):207−13

doi: 10.1016/S0308-8146(97)00103-9
[9]

Nunes-Silva P, Witter S, da Rosa JM, Halinski R, Schlemmer LM, et al. 2020. Diversity of floral visitors in apple orchards: influence on fruit characteristics depends on apple cultivar. Neotropical Entomology 49:511−24

doi: 10.1007/s13744-020-00762-1
[10]

Fotirić Akšić M, Dabić Zagorac D, Gašić U, Tosti T, Natić M, et al. 2022. Analysis of apple fruit (Malus × domestica Borkh.) quality attributes obtained from organic and integrated production systems. Sustainability 14:5300

doi: 10.3390/su14095300
[11]

Fotirić Akšić M, Nešović M, Ćirić I, Tešić Ž, Pezo L, et al. 2022. Polyphenolics and chemical profiles of domestic Norwegian apple (Malus × domestica Borkh.) cultivars. Frontiers in Nutrition 9:941487

doi: 10.3389/fnut.2022.941487
[12]

Charles M, Corollaro ML, Manfrini L, Endrizzi I, Aprea E, et al. 2018. Application of a sensory-instrumental tool to study apple texture characteristics shaped by altitude and time of harvest. Journal of the Science of Food and Agriculture 98:1095−1104

doi: 10.1002/jsfa.8560
[13]

Adige A, Kaneppele E, Stürz B, Chitarrini G, Eisenstecken D, et al. 2022. Influence of altitude on the metabolites of the Golden Delicious apple variety in South Tyro. Laimburg Journal 4:2612−93

doi: 10.23796/LJ/2022.004
[14]

Ma B, Chen J, Zheng H, Fang T, Ogutu C, et al. 2015. Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chemistry 172:86−91

doi: 10.1016/j.foodchem.2014.09.032
[15]

Giné Bordonaba J, Terry LA. 2010. Manipulating the taste-related composition of strawberry fruits (Fragaria × Ananassa) from different cultivars using deficit irrigation. Food Chemistry 122:1020−26

doi: 10.1016/j.foodchem.2010.03.060
[16]

Ticha A, Salejda AM, Hyšpler R, Matejicek A, Paprstein F, et al. 2015. Sugar composition of apple cultivars and its relationship to sensory evaluation. Zywnosc Nauka Technologia [Polish Society of Food Technology] 22:137−50

doi: 10.15193/zntj/2015/101/062
[17]

Di Matteo G, Spano M, Esposito C, Santarcangelo C, Baldi A, et al. 2021. NMR characterization of ten apple cultivars from the piedmont region. Foods 10:289

doi: 10.3390/foods10020289
[18]

Xu L, Zang E, Sun S, Li M. 2023. Main flavor compounds and molecular regulation mechanisms in fruits and vegetables. Critical Reviews in Food Science and Nutrition 63:11859−79

doi: 10.1080/10408398.2022.2097195
[19]

Wang L, Pan X, Jiang L, Chu Y, Gao S, et al. 2022. The biological activity mechanism of chlorogenic acid and its applications in food industry: a review. Frontiers in Nutrition 9:943911

doi: 10.3389/fnut.2022.943911
[20]

Yuan XS, Yu ZP, Liu L, Xu Y, Zhang L, et al. 2020. Genome-wide identification and expression analysis of asparagine synthetase family in apple. Journal of Integrative Agriculture 19:1261−73

doi: 10.1016/S2095-3119(20)63171-9
[21]

Wicklund T, Guyot S, Le Quéré JM. 2021. Chemical composition of apples cultivated in Norway. Crops 1:8−19

doi: 10.3390/crops1010003
[22]

Wang M, Li Y, Li C, Xu H, Sun T, et al. 2023. Melatonin induces resistance against Penicillium expansum in apple fruit through enhancing phenylpropanoid metabolism. Physiological and Molecular Plant Pathology 127:102082

doi: 10.1016/j.pmpp.2023.102082
[23]

Zhou D, Liu Q, Peng J, Tu S, Pan L, Tu K. 2020. Metabolic analysis of phenolic profiles reveals the enhancements of anthocyanins and procyanidins in postharvest peach as affected by hot air and ultraviolet C. Postharvest Biology and Technology 167:111227:

doi: 10.1016/j.postharvbio.2020.111227
[24]

Tang X, Liu J, Dong W, Li P, Li L, et al. 2013. The cardioprotective effects of citric acid and L-malic acid on myocardial ischemia/reperfusion injury. Evidence-based Complementary and Alternative Medicine 2013:820695

doi: 10.1155/2013/820695
[25]

Gõmez-Moreno G, Aguilar-Salvatierra A, Guardia J, Uribe-Marioni A, Cabrera-Ayala M, et al. 2013. The efficacy of a topical sialogogue spray containing 1% malic acid in patients with antidepressant-induced dry mouth: a double-blind, randomized clinical trial. Depression and Anxiety 30:137−42

doi: 10.1002/da.22017
[26]

Rodgers AL, Webber D, De Charmoy R, Jackson GE, Ravenscroft N. 2014. Malic acid supplementation increases urinary citrate excretion and urinary pH: implications for the potential treatment of calcium oxalate stone disease. Journal of Endourology 28:229−36

doi: 10.1089/end.2013.0477
[27]

Wang QJ, Sun H, Dong QL, Sun TY, Jin ZX, et al. 2016. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnology Journal 14:1986−97

doi: 10.1111/pbi.12556
[28]

Karagiannis E, Michailidis M, Tanou G, Scossa F, Sarrou E, et al. 2020. Decoding altitude-activated regulatory mechanisms occurring during apple peel ripening. Horticulture Research 7:120

doi: 10.1038/s41438-020-00340-x
[29]

Iqbal N, Poór P. 2025. Plant protection by tannins depends on defence-related phytohormones. Journal of Plant Growth Regulation 44:22−39

doi: 10.1007/s00344-024-11291-1
[30]

Qu C, Hao B, Xu X, Wang Y, Yang C, et al. 2019. Functional research on three presumed asparagine synthetase family members in poplar. Genes 10:10050326

doi: 10.3390/genes10050326
[31]

Wang H, Zheng X, Wu Y, Zhan W, Guo Y, et al. 2023. Transcriptome analysis identifies genes associated with chlorogenic acid biosynthesis during apple fruit development. Horticulturae 9:217

doi: 10.3390/horticulturae9020217
[32]

Takimoto K, Saito K, Kasai Z. 1976. Diurnal change of tartrate dissimilation during the ripening of grapes. Phytochemistry 15:927−30

doi: 10.1016/S0031-9422(00)84372-1