| [1] |
National Statistical Office. 2023. Agricultural statistics reports for China. https://data.stats.gov.cn/easyquery.htm?cn=C01 |
| [2] |
Liang SY, Bai WB, Liu JH, Sun JX. 2021. Analysis on the cause and mechanism of color lose of fermented fruit wine rich in anthocyanins. Journal of Zhejiang University (Agriculture and Life Sciences) 47(6):695−703 doi: 10.3785/j.issn.1008-9209.2021.07.071 |
| [3] |
Onofri L. 2022. A note on the economics of fruit wines: state of the arts and research gaps. Horticulturae 8:163 doi: 10.3390/horticulturae8020163 |
| [4] |
Liang YL, Chen Q, Wu YH, Lin YX. 2020. Research and development status of fruit wine. China Brewing 39(12):5−9 doi: 10.11882/j.issn.0254-5071.2020.12.002 |
| [5] |
Bezerra M, Ribeiro M, Cosme F, Nunes FM. 2024. Overview of the distinctive characteristics of strawberry, raspberry, and blueberry in berries, berry wines, and berry spirits. Comprehensive Reviews in Food Science and Food Safety 23:e13354 doi: 10.1111/1541-4337.13354 |
| [6] |
Wu Z, Li X, Zeng Y, Cai D, Teng Z, et al. 2022. Color Stability Enhancement and Antioxidation Improvement of Sanhua Plum Wine under Circulating Ultrasound. Foods 11:2435 doi: 10.3390/foods11162435 |
| [7] |
You Y, Li N, Han X, Guo JL, Zhao Y, et al. 2019. The effects of six phenolic acids and tannic acid on colour stability and the anthocyanin content of mulberry juice during refrigerated storage. International Journal of Food Science and Technology 54:2141−50 doi: 10.1111/ijfs.14121 |
| [8] |
Chen WD, Bai WB, Sun JX. 2023. The influence of food microorganisms on the color of anthocyanins. Journal of Chinese Institute of Food Science and Technology 23(4):463−72 doi: 10.16429/j.1009-7848.2023.04.041 |
| [9] |
Sousa C, Mateus N, Silva AMS, González-Paramás AM, Santos-Buelga C, et al. 2007. Structural and chromatic characterization of a new malvidin 3-glucoside-vanillyl-catechin pigment. Food Chemistry 102:1344−51 doi: 10.1016/j.foodchem.2006.04.050 |
| [10] |
Gao Y, Wang X, Ai J, Huang W, Zhan J, et al. 2023. Formation of vinylphenolic pyranoanthocyanins by selected indigenous yeasts displaying high hydroxycinnamate decarboxylase activity during mulberry wine fermentation and aging. Food Microbiology 113:104272 doi: 10.1016/j.fm.2023.104272 |
| [11] |
Han Y, Li X, Zhang Q, Zhou W, Wu G, et al. 2024. Lactobacillus fermentation accelerated biotransformation of cranberry anthocyanins towards phenol-pyranoanthocyanins and their stability and antioxidant property. Food Chemistry 461:140793 doi: 10.1016/j.foodchem.2024.140793 |
| [12] |
Cameira-dos-Santos PJ, Brillouet JM, Cheynier V, Moutounet M. 1996. Detection and partial characterisation of new anthocyanin-derived pigments in wine. Journal of the Science of Food and Agriculture 70:204−8 doi: 10.1002/(SICI)1097-0010(199602)70:2<204::AID-JSFA484>3.0.CO;2-F |
| [13] |
Zhao Y, Zhu B, Zhou Z, Wu Z, Zhang W. 2023. Cloning and characterization of phenolic acid decarboxylase responsible for aromatic volatile phenols production in Paocai based on metatranscriptomics. Food Bioscience 55:102953 doi: 10.1016/j.fbio.2023.102953 |
| [14] |
Chen YZ, Qin C, Li Q, Hu KD, Li JL, et al. 2024. Research progress in phenolic acid decarboxylase derived from microorganisms. Food Science 45(11):323−32 doi: 10.7506/spkx1002-6630-20230517-163 |
| [15] |
Benito S, Palomero F, Morata A, Uthurry C, Suárez-Lepe JA. 2009. Minimization of ethylphenol precursors in red wines via the formation of pyranoanthocyanins by selected yeasts. International Journal of Food Microbiology 132:145−152 doi: 10.1016/j.ijfoodmicro.2009.04.015 |
| [16] |
Escribano R, González-Arenzana L, Garijo P, Berlanas C, López-Alfaro I, et al. 2017. Screening of enzymatic activities within different enological non-Saccharomyces yeasts. Journal of Food Science and Technology 54:1555−1564 doi: 10.1007/s13197-017-2587-7 |
| [17] |
Li Q, Zhang F, Wang Z, Feng Y, Han Y. 2023. Advances in the preparation, stability, metabolism, and physiological roles of anthocyanins: a review. Foods 12:3969 doi: 10.3390/foods12213969 |
| [18] |
Bimpilas A, Panagopoulou M, Tsimogiannis D, Oreopoulou V. 2016. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chemistry 197:39−46 doi: 10.1016/j.foodchem.2015.10.095 |
| [19] |
Wang WQ, Deng JH, Wei YZ, Liu YH. 2014. Research progress on synthesis and stability of grape anthocyanins. China Brewing 33(5):10−14 doi: 10.11882/j.issn.0254-5071.2014.05.003 |
| [20] |
Chen Y, Belwal T, Xu Y, Ma Q, Li D, et al. 2023. Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing. Critical Reviews in Food Science and Nutrition 63:8639−71 doi: 10.1080/10408398.2022.2063250 |
| [21] |
Huang K, Hu J, Li X, Sun J, Bai W. 2024. Advancements in the promotion of pyranoanthocyanins formation in wine: A review of current research. Food Chemistry 438:137990 doi: 10.1016/j.foodchem.2023.137990 |
| [22] |
Marquez A, Serratosa MP, Merida J. 2013. Pyranoanthocyanin derived pigments in wine: structure and formation during winemaking. Journal of Chemistry. 2013:713028 doi: 10.1155/2013/713028 |
| [23] |
Morata A, Calderón F, González MC, Gómez-Cordovés MC, Suárez JA. 2007. Formation of the highly stable pyranoanthocyanins (vitisins A and B) in red wines by the addition of pyruvic acid and acetaldehyde. Food Chemistry 100:1144−52 doi: 10.1016/j.foodchem.2005.11.024 |
| [24] |
Zhang B, Han SY, Ma TZ, Zhu X, Li M. 2018. Progress in Understanding Structures of Anthocyanins Derivatives in Red Wines. Food Science 39(5):284−95 doi: 10.7506/spkx1002-6630-201805043 |
| [25] |
De Freitas V, Mateus N. 2011. Formation of pyranoanthocyanins in red wines: a new and diverse class of anthocyanin derivatives. Analytical and Bioanalytical Chemistry 401:1463−73 doi: 10.1007/s00216-010-4479-9 |
| [26] |
Rentzsch M, Schwarz M, Winterhalter P. 2007. Pyranoanthocyanins - an overview on structures, occurrence, and pathways of formation. Trends in Food Science & Technology 18:526−34 doi: 10.1016/j.jpgs.2007.04.014 |
| [27] |
He J, Carvalho ARF, Mateus N, De Freitas V. 2010. Spectral features and stability of oligomeric pyranoanthocyanin-flavanol pigments isolated from red wines. Journal of Agricultural and Food Chemistry 58:9249−58 doi: 10.1021/jf102085e |
| [28] |
Oliveira J, Santos-Buelga C, Silva AMS, de Freitas V, Mateus N. 2006. Chromatic and structural features of blue anthocyanin-derived pigments present in Port wine. Analytica Chimica Acta 563:2−9 doi: 10.1016/j.aca.2005.11.027 |
| [29] |
Escott C, Morata A, Loira I, Tesfaye W, Suarez-Lepe JA. 2016. Characterization of polymeric pigments and pyranoanthocyanins formed in microfermentations of non-Saccharomyces yeasts. Journal of Applied Microbiology 121:1346−1356 doi: 10.1111/jam.13255 |
| [30] |
Morata A, Benito S, Loira I, Palomero F, González MC, et al. 2012. Formation of pyranoanthocyanins by Schizosaccharomyces pombe during the fermentation of red must. International Journal of Food Microbiology 159:47−53 doi: 10.1016/j.ijfoodmicro.2012.08.007 |
| [31] |
Liu S, Laaksonen O, Yang W, Zhang B, Yang B. 2020. Pyranoanthocyanins in bilberry (Vaccinium myrtillus L.) wines fermented with Schizosaccharomyces pombe and their evolution during aging. Food Chemistry 305:125438 doi: 10.1016/j.foodchem.2019.125438 |
| [32] |
Morata A, González C, Suárez-Lepe JA. 2007. Formation of vinylphenolic pyranoanthocyanins by selected yeasts fermenting red grape musts supplemented with hydroxycinnamic acids. International Journal of Food Microbiology 116:144−52 doi: 10.1016/j.ijfoodmicro.2006.12.032 |
| [33] |
Tofalo R, Suzzi G, Perpetuini G. 2021. Discovering the Influence of Microorganisms on Wine Color. Frontiers in Microbiology 12:790935 doi: 10.3389/fmicb.2021.790935 |
| [34] |
Benito Á, Calderón F, Benito S. 2017. The combined use of Schizosaccharomyces pombe and Lachancea thermotolerans-effect on the anthocyanin wine composition. Molecules 22:739 doi: 10.3390/molecules22050739 |
| [35] |
Chen K, Escott C, Loira I, del Fresno JM, Morata A, et al. 2018. Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: Influence on colour, aroma and sensorial properties of young wines. Food Microbiology 69:51−63 doi: 10.1016/j.fm.2017.07.018 |
| [36] |
Liu T. 2015. Studies on the effect of cochromanes on the cochromatic effect and colour of wine anthocyanins. Thesis. Jiangnan University, Zhejiang, China. pp. 5−36 |
| [37] |
Lou LY, Chen HJ, Yin P, Shen Q, Chen JC, et al. 2019. Enhanced Color Stability of Clear Chinese Bayberry Juice during Storage by Phenolic Acid. Food Science 40(9):220−27 doi: 10.7506/spkx1002-6630-20180413-178 |
| [38] |
Miyagusuku-Cruzado G, García-Cano I, Rocha-Mendoza D, Jiménez-Flores R, Monica Giusti M. 2020. Monitoring hydroxycinnamic acid decarboxylation by lactic acid bacteria using high-throughput UV-Vis spectroscopy. Molecules 25:3142 doi: 10.3390/molecules25143142 |
| [39] |
Lubbers RJM, Dilokpimol A, Navarro J, Peng M, Wang M, et al. 2019. Cinnamic acid and sorbic acid conversion are mediated by the same transcriptional regulator in Aspergillus niger. Frontiers in Bioengineering and Biotechnology 7:249 doi: 10.3389/fbioe.2019.00249 |
| [40] |
Cabrita MJ, Palma V, Patão R, Freitas AMC. 2012. Conversion of hydroxycinnamic acids into volatile phenols in a synthetic medium and in red wine by Dekkera bruxellensis. Food Science and Technology 32:106−11 doi: 10.1590/S0101-20612012005000024 |
| [41] |
Edlin DAN, Narbad A, Gasson MJ, Dickinson JR, Lloyd D. 1998. Purification and characterization of hydroxycinnamate decarboxylase from Brettanomyces anomalus. Enzyme and Microbial Technology 22:232−39 doi: 10.1016/S0141-0229(97)00169-5 |
| [42] |
Cavin JF, Barthelmebs L, Guzzo J, Van Beeumen J, Samyn B, et al. 1997. Purification and characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum. FEMS Microbiology Letters 147:291−95 doi: 10.1111/j.1574-6968.1997.tb10256.x |
| [43] |
Rosazza JPN, Huang Z, Dostal L, Volm T, Rousseau B. 1995. Biocatalytic transformations of ferulic acid: an abundant aromatic natural product. Journal of Industrial Microbiology 15:457−71 doi: 10.1007/BF01570016 |
| [44] |
Huang HK, Chen LF, Tokashiki M, Ozawa T, Taira T, et al. 2012. An endogenous factor enhances ferulic acid decarboxylation catalyzed by phenolic acid decarboxylase from Candida guilliermondii. AMB Express 2:4 doi: 10.1186/2191-0855-2-4 |
| [45] |
Van Beek S, Priest FG. 2000. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation. Applied and Environmental Microbiology 66:5322−5328 doi: 10.1128/AEM.66.12.5322-5328.2000 |
| [46] |
Godoy L, Martínez C, Carrasco N, Ganga MA. 2008. Purification and characterization of a p-coumarate decarboxylase and a vinylphenol reductase from Brettanomyces bruxellensis. International Journal of Food Microbiology 127:6−11 doi: 10.1016/j.ijfoodmicro.2008.05.011 |
| [47] |
Richard P, Viljanen K, Penttilä M. 2015. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae. AMB Express 5:12 doi: 10.1186/s13568-015-0103-x |
| [48] |
Benito S, Morata A, Palomero F, González MC, Suárez-Lepe JA. 2011. Formation of vinylphenolic pyranoanthocyanins by Saccharomyces cerevisiae and Pichia guillermondii in red wines produced following different fermentation strategies. Food Chemistry 124:15−23 doi: 10.1016/j.foodchem.2010.05.096 |
| [49] |
Topić Božič J, Ćurko N, Kovačević Ganić K, Butinar L, Albreht A, et al. 2020. Synthesis of pyranoanthocyanins from Pinot Noir grape skin extract using fermentation with high pyranoanthocyanin producing yeasts and model wine storage as potential approaches in the production of stable natural food colorants. European Food Research and Technology 246:1141−52 doi: 10.1007/s00217-020-03467-2 |
| [50] |
Zhou J, Tang C, Zou S, Lei L, Wu Y, et al. 2024. Enhancement of pyranoanthocyanin formation in blueberry wine with non-Saccharomyces yeasts. Food Chemistry 438:137956 doi: 10.1016/j.foodchem.2023.137956 |
| [51] |
Tan J, Li Q, Xue H, Tang J. 2020. Ultrasound-assisted enzymatic extraction of anthocyanins from grape skins: optimization, identification, and antitumor activity. Journal of Food Science 85:3731−44 doi: 10.1111/1750-3841.15497 |
| [52] |
You Y, Li N, Han X, Guo J, Liu G, et al. 2018. Influence of tannin extract and yeast extract on color preservation and anthocyanin content of mulberry wine. Journal of Food Science 83:1084−93 doi: 10.1111/1750-3841.14094 |
| [53] |
Liu C, Xue H, Shen L, Liu C, Zheng X, et al. 2019. Improvement of anthocyanins rate of blueberry powder under variable power of microwave extraction. Separation and Purification Technology 226:86−298 doi: 10.1016/j.seppur.2019.05.096 |
| [54] |
Pissarra J, Mateus N, Rivas-Gonzalo J, Santos Buelga C, De Freitas V. 2003. Reaction between malvidin 3-glucoside and (+)-catechin in model solutions containing different aldehydes. Journal of Food Science 68:476−481 doi: 10.1111/j.1365-2621.2003.tb05697.x |
| [55] |
Morata A, Escott C, Loira I, Del Fresno JM, González C, et al. 2019. Influence of Saccharomyces and non-Saccharomyces Yeasts in the Formation of Pyranoanthocyanins and Polymeric Pigments during Red Wine Making. Molecules 24:4490 doi: 10.3390/molecules24244490 |
| [56] |
Mateus N, Oliveira J, Pissarra J, González-Paramás AM, Rivas-Gonzalo JC, et al. 2006. A new vinylpyranoanthocyanin pigment occurring in aged red wine. Food Chemistry 97:689−95 doi: 10.1016/j.foodchem.2005.05.051 |
| [57] |
Morata A, Gómez-Cordovés MC, Calderón F, Suárez JA. 2006. Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces. International Journal of Food Microbiology 106:123−29 doi: 10.1016/j.ijfoodmicro.2005.05.019 |
| [58] |
Zhu S, Wu Z, Niu X, Zhan X, Tao H, et al. 2022. Novel nanozyme-catalyzed and magnetically assisted colorimetric biosensor for Staphylococcus aureus detection with a low matrix effect from complex environments. Sensors and Actuators B: Chemical 373:132752 doi: 10.1016/j.snb.2022.132752 |
| [59] |
Prim N, Javier Pastor FI, Diaz P. 2002. Zymographic detection of cinnamic acid decarboxylase activity. Journal of Microbiological Methods 51:417−20 doi: 10.1016/S0167-7012(02)00109-4 |
| [60] |
Deng H, Gu Q, Yu X, Zhou J, Liu X. 2024. Surface-displayed phenolic acid decarboxylase for increased vinylphenolic pyranoanthocyanins in blueberry wine. Current Research in Food Science 8:100730 doi: 10.1016/j.crfs.2024.100730 |
| [61] |
Wang X. 2021. Screening of strains with High HCDC activity and its effect on improving the Stability of anthocyanins in Mulberry Wine. Thesis. China Agricultural University, Beijing, China. pp. 9−70 |
| [62] |
Viana F, Gil JV, Genovés S, Vallés S, Manzanares P. 2008. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiology 25:778−85 doi: 10.1016/j.fm.2008.04.015 |
| [63] |
Morata A, Vejarano R, Ridolfi G, Benito S, Palomero F, et al. 2013. Reduction of 4-ethylphenol production in red wines using HCDC+ yeasts and cinnamyl esterases. Enzyme and Microbial Technology 52:99−104 doi: 10.1016/j.enzmictec.2012.11.001 |
| [64] |
Božič JT, Butinar L, Albreht A, Vovk I, Korte D, et al. 2020. The impact of Saccharomyces and non-Saccharomyces yeasts on wine colour: A laboratory study of vinylphenolic pyranoanthocyanin formation and anthocyanin cell wall adsorption. LWT 123:109072 doi: 10.1016/j.lwt.2020.109072 |
| [65] |
Yu X, Tang C, Zhou J, Gu Q. 2024. A hydroxycinnamic acid decarboxylase-producing strain of Saccharomyces megaterium. CN115747084A, China. |
| [66] |
Laforgue R, Lonvaud-Funel A. 2012. Hydroxycinnamic acid decarboxylase activity of Brettanomyces bruxellensis involved in volatile phenol production: Relationship with cell viability. Food Microbiology 32:230−34 doi: 10.1016/j.fm.2012.06.004 |
| [67] |
Benito S, Palomero F, Morata A, Calderón F, Suárez-Lepe JA. 2009. Factors Affecting the Hydroxycinnamate Decarboxylase/Vinylphenol Reductase Activity of Dekkera/Brettanomyces: application for Dekkera/Brettanomyces Control in Red Wine Making. Journal of Food Science 74:M15−M22 doi: 10.1111/j.1750-3841.2008.00977.x |
| [68] |
Rodriguez-Naranjo MI, Gil-Izquierdo A, Troncoso AM, Cantos-Villar E, Garcia-Parrilla MC. 2011. Melatonin is synthesised by yeast during alcoholic fermentation in wines. Food Chemistry 126:1608−13 doi: 10.1016/j.foodchem.2010.12.038 |
| [69] |
Dias L, Pereira-da-Silva S, Tavares M, Malfeito-Ferreira M, Loureiro V. 2003. Factors affecting the production of 4-ethylphenol by the yeast Dekkera bruxellensis in enological conditions. Food Microbiology 20:377−84 doi: 10.1016/S0740-0020(03)00023-6 |
| [70] |
Valdetara F, Fracassetti D, Campanello A, Costa C, Foschino R, et al. 2017. A response surface methodology approach to investigate the effect of sulfur dioxide, pH, and ethanol on DbCD and DbVPR gene expression and on the volatile phenol production in dekkera/brettanomyces bruxellensis CBS2499. Frontiers in Microbiology 8:1727 doi: 10.3389/fmicb.2017.01727 |
| [71] |
Dashko S, Zhou N, Tinta T, Sivilotti P, Lemut MS, et al. 2015. Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla. Journal of Industrial Microbiology & Biotechnology 42:997−1010 doi: 10.1007/s10295-015-1620-y |
| [72] |
Zhang P, Zhang R, Sirisena S, Gan R, Fang Z. 2021. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: a mini-review. Food Microbiology 100:103859 doi: 10.1016/j.fm.2021.103859 |
| [73] |
Velenosi M, Crupi P, Perniola R, Marsico AD, Salerno A, et al. 2021. Color stabilization of apulian red wines through the sequential inoculation of Starmerella bacillaris and Saccharomyces cerevisiae. Molecules 26:907 doi: 10.3390/molecules26040907 |
| [74] |
Malfeito-Ferreira M. 2011. Yeasts and wine off-flavours: a technological perspective. Annals of Microbiology 61:95−102 doi: 10.1007/s13213-010-0098-0 |
| [75] |
Morata A, Loira I, González C, Escott C. 2021. Non-Saccharomyces as biotools to control the production of off-flavors in wines. Molecules 26:4571 doi: 10.3390/molecules26154571 |
| [76] |
Palomero F, Ntanos K, Morata A, Benito S, Suárez-Lepe JA. 2011. Reduction of wine 4-ethylphenol concentration using lyophilised yeast as a bioadsorbent: influence on anthocyanin content and chromatic variables. European Food Research and Technology 232:971−77 doi: 10.1007/s00217-011-1470-4 |
| [77] |
Sipiczki M. 2020. Metschnikowia pulcherrima and related pulcherrimin-producing yeasts: fuzzy species boundaries and complex antimicrobial antagonism. Microorganisms 8:1029 doi: 10.3390/microorganisms8071029 |
| [78] |
Zhang X, Li B, Zhang Z, Chen Y, Tian S. 2020. Antagonistic yeasts: a promising alternative to chemical fungicides for controlling postharvest decay of fruit. Journal of Fungi 6:158 doi: 10.3390/jof6030158 |
| [79] |
Suárez R, Suárez-Lepe JA, Morata A, Calderón F. 2007. The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: A review. Food Chemistry 102:10−21 doi: 10.1016/j.foodchem.2006.03.030 |
| [80] |
Pinto L, Baruzzi F, Cocolin L, Malfeito-Ferreira M. 2020. Emerging technologies to control Brettanomyces spp. in wine: recent advances and future trends. Trends in Food Science & Technology 99:88−100 doi: 10.1016/j.jpgs.2020.02.013 |