[1]

Leggett WC, Whitney RR. 1972. Water temperature and the migrations of American shad. Fishery Bulletin 90:659−70

[2]

Limburg KE, Hattala K A, Kahnle A. 2003. American shad in its native range. American Fiseries Society Symposium 2003. pp. 125−40

[3]

Jia Y, Chen Y, Goudie CA, Simco BA, Liu Q. 2007. Potential invasion risk of the introduced American shad Alosa sapidissima to aquatic ecosystem in China. Acta Zoologica Sinica 53:625−29

doi: 10.3969/j.issn.1674-5507.2007.04.006
[4]

Liu Q, Zheng Y, Fu L, Simco BA, Goudie CA. 2021. Brood-stock management and natural spawning of American shad (Alosa sapidissima) in a recirculating aquaculture system. Aquaculture 532:735952

doi: 10.1016/j.aquaculture.2020.735952
[5]

Jia Y, Liu Q, Goudie CA, Simco BA. 2009. Survival, growth, and feed utilization of pre- and postmetamorphic American shad exposed to increasing salinity. North American Journal of Aquaculture 71:197−205

doi: 10.1577/a07-095.1
[6]

Liu ZF, Gao XQ, Yu JX, Qian XM, Xue GP, et al. 2017. Effects of different salinities on growth performance, survival, digestive enzyme activity, immune response, and muscle fatty acid composition in juvenile American shad (Alosa sapidissima). Fish Physiology and Biochemistry 43:761−73

doi: 10.1007/s10695-016-0330-3
[7]

Gao X, Hong L, Liu ZF, Guo ZL, Wang YH, et al. 2015. The definition of point of no return of larvae and feeding characteristics of Alosa sapidissima larvae and juveniles. Journal of Fisheries of China 39:392−400

[8]

Olney JE, Latour RJ, Watkins BE, Clarke DG. 2006. Migratory behavior of American shad in the york river, Virginia, with implications for estimating in-river exploitation from tag recovery data. Transactions of the American Fisheries Society 135:889−96

doi: 10.1577/t05-101.1
[9]

Mann DA, Lu Z, Popper AN. 1997. A clupeid fish can detect ultrasound. Nature 389:341

doi: 10.1038/38636
[10]

Liu QH, Jia YJ, Gao Y, Wang A, Goudie C. 2006. Biological characteristics and intensive-culture management of American shad. Fishery Modernization 1:26−27

doi: 10.3969/j.issn.1007-9580.2006.01.011
[11]

Liu QH, Jia YJ, Gao YL, Qi ZH, Wang AM. 2006. Bottlenecks and Countermeasures of American shad culture (I). Scientific Fish Farming 7:5

[12]

Nack CC, Swaney DP, Limburg KE. 2019. Historical and projected changes in spawning phenologies of American shad and striped bass in the Hudson River Estuary. Marine and Coastal Fisheries 11:271−84

doi: 10.1002/mcf2.10076
[13]

Arseneau JR, Steeves R, Laflamme M. 2017. Modified low-salt CTAB extraction of high-quality DNA from contaminant-rich tissues. Molecular Ecology Resources 17:686−93

doi: 10.1111/1755-0998.12616
[14]

Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−90

doi: 10.1093/bioinformatics/bty560
[15]

Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764−70

doi: 10.1093/bioinformatics/btr011
[16]

Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, et al. 2017. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33:2202−4

doi: 10.1093/bioinformatics/btx153
[17]

PacificBiosciences. 2021. CCS - Pacific Biosciences. https://github.com/PacificBiosciences/ccs (accessed 19 March 2021)

[18]

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170−75

doi: 10.1038/s41592-020-01056-5
[19]

Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, et al. 2016. Juicer provides a one-click system for analyzing loop-resolution hi-C experiments. Cell Systems 3:95−98

doi: 10.1016/j.cels.2016.07.002
[20]

Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92−95

doi: 10.1126/science.aal3327
[21]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754−60

doi: 10.1093/bioinformatics/btp324
[22]

Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, et al. 2016. Juicebox provides a visualization system for hi-C contact maps with unlimited zoom. Cell Systems 3:99−101

doi: 10.1016/j.cels.2015.07.012
[23]

Ou S, Su W, Liao Y, Chougule K, Agda JRA, et al. 2019. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biology 20:275

doi: 10.1186/s13059-019-1905-y
[24]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[25]

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33:290−95

doi: 10.1038/nbt.3122
[26]

Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, et al. 2008. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Research 18:188−96

doi: 10.1101/gr.6743907
[27]

Stanke M, Keller O, Gunduz I, Hayes A, Waack S, et al. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research 34:W435−W439

doi: 10.1093/nar/gkl200
[28]

Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. 2005. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Research 33:6494−506

doi: 10.1093/nar/gki937
[29]

Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. 2019. Whole-genome annotation with BRAKER. In Gene Prediction. Methods in Molecular Biology, ed. Kollmar M. New York: Humana. pp. 65−95. doi: 10.1007/978-1-4939-9173-0_5

[30]

Stanke M, Schöffmann O, Morgenstern B, Waack S. 2006. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7:62

doi: 10.1186/1471-2105-7-62
[31]

Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. 2016. BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32:767−69

doi: 10.1093/bioinformatics/btv661
[32]

Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637−44

doi: 10.1093/bioinformatics/btn013
[33]

Korf I. 2004. Gene finding in novel genomes. BMC Bioinformatics 5:59

doi: 10.1186/1471-2105-5-59
[34]

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210−12

doi: 10.1093/bioinformatics/btv351
[35]

The UniProt Consortium. 2023. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Research 51:D523−D531

doi: 10.1093/nar/gkac1052
[36]

Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research 35:D61−D65

doi: 10.1093/nar/gkl842
[37]

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research 47:D309−D314

doi: 10.1093/nar/gky1085
[38]

Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

doi: 10.1186/1471-2105-4-41
[39]

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:59−60

doi: 10.1038/nmeth.3176
[40]

Jones P, Binns D, Chang HY, Fraser M, Li W, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236−40

doi: 10.1093/bioinformatics/btu031
[41]

Corpet F, Gouzy J, Kahn D. 1998. The ProDom database of protein domain families. Nucleic Acids Research 26:323−26

doi: 10.1093/nar/26.1.323
[42]

Attwood TK. 2002. The PRINTS database: a resource for identification of protein families. Briefings in Bioinformatics 3:252−63

doi: 10.1093/bib/3.3.252
[43]

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, et al. 2014. Pfam: the protein families database. Nucleic Acids Research 42:D222−30

doi: 10.1093/nar/gkt1223
[44]

Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, et al. 2004. SMART 4.0: towards genomic data integration. Nucleic Acids Research 32:D142−D144

doi: 10.1093/nar/gkh088
[45]

Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, et al. 2003. PANTHER: a library of protein families and subfamilies indexed by function. Genome Research 13:2129−41

doi: 10.1101/gr.772403
[46]

Sigrist CJA, Cerutti L, Hulo N, Gattiker A, Falquet L, et al. 2002. PROSITE: a documented database using patterns and profiles as motif descriptors. Briefings in Bioinformatics 3:265−74

doi: 10.1093/bib/3.3.265
[47]

Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, et al. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35:3100−8

doi: 10.1093/nar/gkm160
[48]

Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933−35

doi: 10.1093/bioinformatics/btt509
[49]

Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, et al. 2018. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research 46:D335−42

doi: 10.1093/nar/gkx1038
[50]

Lowe TM, Eddy SR. 1997. tRNAscan-SE a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25:955−64

doi: 10.1093/nar/25.5.955
[51]

Phytozome. (n.d.). Phytozome v12.1. https://phytozome.jgi.doe.gov (accessed 20 March 2021)

[52]

Coordinators NR. 2018. Database resources of the national center for biotechnology information. Nucleic Acids Research 46:D8−D13

doi: 10.1093/nar/gkx1095
[53]

Sneddon TP, Li P, Edmunds SC. 2012. GigaDB: announcing the GigaScience database. GigaScience 1:11

doi: 10.1186/2047-217X-1-11
[54]

Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20:238

doi: 10.1186/s13059-019-1832-y
[55]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80

doi: 10.1093/molbev/mst010
[56]

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972−73

doi: 10.1093/bioinformatics/btp348
[57]

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312−13

doi: 10.1093/bioinformatics/btu033
[58]

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:1586−91

doi: 10.1093/molbev/msm088
[59]

Tang H, Bowers JE, Wang X, Ming R, Alam M, et al. 2008. Synteny and collinearity in plant genomes. Science 320:486−88

doi: 10.1126/science.1153917
[60]

Tang H, Krishnakumar V, Zeng X, Xu Z, Taranto A, et al. 2024. JCVI: A versatile toolkit for comparative genomics analysis. iMeta 3(4):e211

doi: 10.1002/imt2.211
[61]

Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[62]

De Bie T, Cristianini N, Demuth JP, Hahn MW. 2006. CAFE a computational tool for the study of gene family evolution. Bioinformatics 22:1269−71

doi: 10.1093/bioinformatics/btl097
[63]

Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16:284−87

doi: 10.1089/omi.2011.0118
[64]

Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding Codon alignments. Nucleic Acids Research 34:W609−W612

doi: 10.1093/nar/gkl315
[65]

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74

doi: 10.1093/molbev/msu300
[66]

Xu L, Dong Z, Fang L, Luo Y, Wei Z, et al. 2019. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Research 47:W52−W58

doi: 10.1093/nar/gkz333
[67]

í Kongsstovu S, Dahl HA, Gislason H, Homrum E, Jacobsen JA, et al. 2020. Identification of male heterogametic sex-determining regions on the Atlantic herring Clupea harengus genome. Journal of Fish Biology 97:190−201

doi: 10.1111/jfb.14349
[68]

Louro B, De Moro G, Garcia C, Cox CJ, Veríssimo A, et al. 2019. A haplotype-resolved draft genome of the European sardine (Sardina pilchardus). GigaScience 8:giz059

doi: 10.1093/gigascience/giz059
[69]

Mohindra V, Dangi T, Tripathi RK, Kumar R, Singh RK, et al. 2019. Draft genome assembly of Tenualosa ilisha, Hilsa shad, provides resource for osmoregulation studies. Scientific Reports 9:16511

doi: 10.1038/s41598-019-52603-w
[70]

Leonard JBK, Norieka JF, Kynard B, McCormick SD. 1999. Metabolic rates in an anadromous clupeid, the American shad (Alosa sapidissima). Journal of Comparative Physiology B 169:287−95

doi: 10.1007/s003600050223
[71]

Liu QH, Zheng YH, Meng H, Wang WJ. 2017. The breeding risks and countermeasures of American shad. Scientific Fish Farming 11:1−3

[72]

Barry T, Kynard B. 1986. Attraction of adult American shad to fish lifts at Holyoke Dam, Connecticut River. North American Journal of Fisheries Management 6:233−41

doi: 10.1577/1548-8659(1986)6<233:AOAAST>2.0.CO;2