[1]

World Health Organization. 2018‎. Global Status Report on Road Safety 2018. https://iris.who.int/handle/10665/276462

[2]

United Nations. 2020. Improving Global Road Safety: A/RES/74/299. General Assembly Resolution 74/299. https://undocs.org/en/A/RES/74/299

[3]

World Health Organization. 2021. Global Plan - Decade of Action for Road Safety 2021-2030. https://cdn.who.int/media/docs/default-source/documents/health-topics/road-traffic-injuries/global-plan-for-road-safety.pdf

[4]

Guo M, Zhao X, Yao Y, Yan P, Su Y, et al. 2021. A study of freeway crash risk prediction and interpretation based on risky driving behavior and traffic flow data. Accident Analysis & Prevention 160:106328

doi: 10.1016/j.aap.2021.106328
[5]

Liu Q, Li C, Jiang H, Nie S, Chen L. 2022. Transfer learning-based highway crash risk evaluation considering manifold characteristics of traffic flow. Accident Analysis & Prevention 168:106598

doi: 10.1016/j.aap.2022.106598
[6]

Yu R, Abdel-Aty M. 2013. Multi-level Bayesian analyses for single-and multi-vehicle freeway crashes. Accident Analysis & Prevention 58:97−105

doi: 10.1016/j.aap.2013.04.025
[7]

Formosa N, Quddus M, Ison S, Abdel-Aty M, Yuan J. 2020. Predicting real-time traffic conflicts using deep learning. Accident Analysis & Prevention 136:105429

doi: 10.1016/j.aap.2019.105429
[8]

Winlaw M, Steiner SH, MacKay RJ, Hilal AR. 2019. Using telematics data to find risky driver behaviour. Accident Analysis & Prevention 131:131−36

doi: 10.1016/j.aap.2019.06.003
[9]

Wang L, Abdel-Aty M, Lee J, Shi Q. 2019. Analysis of real-time crash risk for expressway ramps using traffic, geometric, trip generation, and socio-demographic predictors. Accident Analysis & Prevention 122:378−84

doi: 10.1016/j.aap.2017.06.003
[10]

Hossain MM, Rahman MA. 2023. Understanding the potential key risk factors associated with teen driver crashes in the United States: a literature review. Digital Transportation and Safety 2(4):268−77

doi: 10.48130/dts-2023-0022
[11]

Shi L, Qian C, Guo F. 2022. Real-time driving risk assessment using deep learning with XGBoost. Accident Analysis & Prevention 178:106836

doi: 10.1016/j.aap.2022.106836
[12]

Jiang F, Yuen KKR, Lee EWM. 2020. A long short-term memory-based framework for crash detection on freeways with traffic data of different temporal resolutions. Accident Analysis & Prevention 141:105520

doi: 10.1016/j.aap.2020.105520
[13]

Pande A, Das A, Abdel-Aty M, Hassan H. 2011. Estimation of real-time crash risk: are all freeways created equal? Transportation Research Record 2237(1):60−66

doi: 10.3141/2237-07
[14]

Shew C, Pande A, Nuworsoo C. 2013. Transferability and robustness of real-time freeway crash risk assessment. Journal of Safety Research 46:83−90

doi: 10.1016/j.jsr.2013.04.005
[15]

Sun J, Sun J, Chen P. 2014. Use of support vector machine models for real-time prediction of crash risk on urban expressways. Transportation Research Record 2432:91−98

doi: 10.3141/2432-11
[16]

Abdel-Aty M, Uddin N, Pande A, Abdalla MF, Hsia L. 2004. Predicting freeway crashes from loop detector data by matched case-control logistic regression. Transportation Research Record 1897:88−95

doi: 10.3141/1897-12
[17]

Abdel-Aty M, Uddin N, Pande A. 2005. Split models for predicting multivehicle crashes during high-speed and low-speed operating conditions on freeways. Transportation Research Record 1908:51−58

doi: 10.1177/0361198105190800107
[18]

Oh C, Oh JS, Ritchie SG. 2005. Real-time hazardous traffic condition warning system: Framework and evaluation. IEEE Transactions on Intelligent Transportation Systems 6(3):265−72

doi: 10.1109/TITS.2005.853693
[19]

Lee C, Abdel-Aty M. 2006. Temporal variations in traffic flow and ramp-related crash risk. Proc. Applications of Advanced Technology in Transportation, 13 Aug 2006, Chicago, Illinois, USA. Virginia, USA: American Society of Civil Engineers. pp. 244−49. doi: 10.1061/40799(213)40

[20]

Yang K, Wang X, Yu R. 2018. A Bayesian dynamic updating approach for urban expressway real-time crash risk evaluation. Transportation Research Part C: Emerging Technologies 96:192−207

doi: 10.1016/j.trc.2018.09.020
[21]

Zheng Z, Ahn S, Monsere CM. 2010. Impact of traffic oscillations on freeway crash occurrences. Accident Analysis & Prevention 42(2):626−36

doi: 10.1016/j.aap.2009.10.009
[22]

Xu C, Wang W, Liu P, Guo R, Li Z. 2014. Using the Bayesian updating approach to improve the spatial and temporal transferability of real-time crash risk prediction models. Transportation Research Part C: Emerging Technologies 38:167−76

doi: 10.1016/j.trc.2013.11.020
[23]

Wang L, Abdel-Aty M, Shi Q, Park J. 2015. Real-time crash prediction for expressway weaving segments. Transportation Research Part C: Emerging Technologies 61:1−10

doi: 10.1016/j.trc.2015.10.008
[24]

Pande A, Abdel-Aty M. 2006. Assessment of freeway traffic parameters leading to lane-change related collisions. Accident Analysis & Prevention 38(5):936−48

doi: 10.1016/j.aap.2006.03.004
[25]

Abdel-Aty M, Pande A, Das A, Knibbe WJ. 2008. Assessing safety on Dutch freeways with data from infrastructure-based intelligent transportation systems. Transportation Research Record 2083:153−61

doi: 10.3141/2083-18
[26]

Hossain M, Muromachi Y. 2012. A Bayesian network based framework for real-time crash prediction on the basic freeway segments of urban expressways. Accident Analysis & Prevention 45:373−81

doi: 10.1016/j.aap.2011.08.004
[27]

Yu R, Abdel-Aty M. 2013. Utilizing support vector machine in real-time crash risk evaluation. Accident Analysis & Prevention 51:252−59

doi: 10.1016/j.aap.2012.11.027
[28]

Basso F, Basso LJ, Bravo F, Pezoa R. 2018. Real-time crash prediction in an urban expressway using disaggregated data. Transportation Research Part C: Emerging Technologies 86:202−19

doi: 10.1016/j.trc.2017.11.014
[29]

Abdel-Aty M, Pande A. 2005. Identifying crash propensity using specific traffic speed conditions. Journal of Safety Research 36(1):97−108

doi: 10.1016/j.jsr.2004.11.002
[30]

Cai Q, Abdel-Aty M, Yuan J, Lee J, Wu Y. 2020. Real-time crash prediction on expressways using deep generative models. Transportation Research Part C: Emerging Technologies 117:102697

doi: 10.1016/j.trc.2020.102697
[31]

Yuan J, Abdel-Aty M, Gong Y, Cai Q. 2019. Real-time crash risk prediction using long short-term memory recurrent neural network. Transportation Research Record 2673(4):314−26

doi: 10.1177/0361198119840611
[32]

Basso F, Pezoa R, Varas M, Villalobos M. 2021. A deep learning approach for real-time crash prediction using vehicle-by-vehicle data. Accident Analysis & Prevention 162:106409

doi: 10.1016/j.aap.2021.106409
[33]

Lin L, Wang Q, Sadek AW. 2015. A novel variable selection method based on frequent pattern tree for real-time traffic accident risk prediction. Transportation Research Part C: Emerging Technologies 55:444−59

doi: 10.1016/j.trc.2015.03.015
[34]

Sun J, Sun J. 2016. Real-time crash prediction on urban expressways: identification of key variables and a hybrid support vector machine model. IET Intelligent Transport Systems 10(5):331−37

doi: 10.1049/iet-its.2014.0288
[35]

Li P, Abdel-Aty M, Yuan J. 2020. Real-time crash risk prediction on arterials based on LSTM-CNN. Accident Analysis & Prevention 135:105371

doi: 10.1016/j.aap.2019.105371
[36]

Zheng Y, Han L, Yu J, Yu R. 2023. Driving risk assessment under the connected vehicle environment: a CNN-LSTM modeling approach. Digital Transportation and Safety 2(3):211−19

doi: 10.48130/DTS-2023-0017
[37]

Yu R, Wang Y, Zou Z, Wang L. 2020. Convolutional neural networks with refined loss functions for the real-time crash risk analysis. Transportation Research Part C: Emerging Technologies 119:102740

doi: 10.1016/j.trc.2020.102740
[38]

Yang K, Quddus M, Antoniou C. 2022. Developing a new real-time traffic safety management framework for urban expressways utilizing reinforcement learning tree. Accident Analysis & Prevention 178:106848

doi: 10.1016/j.aap.2022.106848
[39]

Khondakar B, Sayed T, Lovegrove G. 2010. Transferability of community-based collision prediction models for use in road safety planning applications. Journal of Transportation Engineering 136(10):871−80

doi: 10.1061/(ASCE)TE.1943-5436.0000153
[40]

Srinivasan R, Colety M, Bahar G, Crowther B, Farmen M. 2016. Estimation of calibration functions for predicting crashes on rural two-lane roads in Arizona. Transportation Research Record 2583(1):17−24

doi: 10.3141/2583-03
[41]

Hadayeghi A, Shalaby AS, Persaud BN, Cheung C. 2006. Temporal transferability and updating of zonal level accident prediction models. Accident Analysis & Prevention 38(3):579−89

doi: 10.1016/j.aap.2005.12.003
[42]

Farid A, Abdel-Aty M, Lee J. 2018. Transferring and calibrating safety performance functions among multiple states. Accident Analysis & Prevention 117:276−87

doi: 10.1016/j.aap.2018.04.024
[43]

Farid A, Abdel-Aty M, Lee J. 2019. Comparative analysis of multiple techniques for developing and transferring safety performance functions. Accident Analysis & Prevention 122:85−98

doi: 10.1016/j.aap.2018.09.024
[44]

La Torre F, Meocci M, Domenichini L, Branzi V, Tanzi N, et al. 2019. Development of an accident prediction model for Italian freeways. Accident Analysis & Prevention 124:1−11

doi: 10.1016/j.aap.2018.12.023
[45]

Feng M, Wang X, Lee J, Abdel-Aty M, Mao S. 2020. Transferability of safety performance functions and hotspot identification for freeways of the United States and China. Accident Analysis & Prevention 139:105493

doi: 10.1016/j.aap.2020.105493
[46]

Tang D, Yang X, Wang X. 2020. Improving the transferability of the crash prediction model using the TrAdaBoost. R2 algorithm. Accident Analysis & Prevention 141:105551

doi: 10.1016/j.aap.2020.105551
[47]

Ahmed M, Abdel-Aty M. 2013. A data fusion framework for real-time risk assessment on freeways. Transportation Research Part C: Emerging Technologies 26:203−13

doi: 10.1016/j.trc.2012.09.002
[48]

Huang T, Wang S, Sharma A. 2020. Highway crash detection and risk estimation using deep learning. Accident Analysis & Prevention 135:105392

doi: 10.1016/j.aap.2019.105392
[49]

Finn C, Abbeel P, Levine S. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. arXiv 2017:Preprint

doi: 10.48550/arXiv.1703.03400
[50]

Lu J, Gong P, Ye J, Zhang J, Zhang C. 2023. A survey on machine learning from few samples. Pattern Recognition 139:109480

doi: 10.1016/j.patcog.2023.109480
[51]

Wang Y, Yao Q, Kwok JT, Ni LM. 2020. Generalizing from a few examples: A survey on few-shot learning. ACM Computing Surveys 53(3):1−34

doi: 10.1145/3386252
[52]

Hospedales T, Antoniou A, Micaelli P, Storkey A. 2022. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44(9):5149−69

doi: 10.1109/TPAMI.2021.3079209
[53]

Xu C, Wang W, Liu P. 2013. A genetic programming model for real-time crash prediction on freeways. IEEE Transactions on Intelligent Transportation Systems 14(2):574−86

doi: 10.1109/TITS.2012.2226240
[54]

Yu R, Abdel-Aty M. 2014. An optimal variable speed limits system to ameliorate traffic safety risk. Transportation Research Part C: Emerging Technologies 46:235−46

doi: 10.1016/j.trc.2014.05.016
[55]

Hanley JA, McNeil BJ. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29−36

doi: 10.1148/radiology.143.1.7063747
[56]

Morris C, Yang JJ. 2021. Effectiveness of resampling methods in coping with imbalanced crash data: Crash type analysis and predictive modeling. Accident Analysis & Prevention 159:106240

doi: 10.1016/j.aap.2021.106240
[57]

Ma Y, Zhang J, Lu J, Chen S, Xing G, et al. 2023. Prediction and analysis of likelihood of freeway crash occurrence considering risky driving behavior. Accident Analysis & Prevention 192:107244

doi: 10.1016/j.aap.2023.107244
[58]

Ali Y, Hussain F, Haque MM. 2024. Advances, challenges, and future research needs in machine learning-based crash prediction models: A systematic review. Accident Analysis & Prevention 194:107378

doi: 10.1016/j.aap.2023.107378
[59]

Baik S, Choi J, Kim H, Cho D, Min J, et al. 2021. Meta-learning with task-adaptive loss function for few-shot learning. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10−17 Oct. 2021. USA: IEEE. pp. 9465−74. doi: 10.1109/ICCV48922.2021.00933