[1]

Incrocci L, Marzialetti P, Incrocci G, Di Vita A, Balendonck J, et al. 2014. Substrate water status and evapotranspiration irrigation scheduling in heterogenous container nursery crops. Agricultural Water Management 131:30−40

doi: 10.1016/j.agwat.2013.09.004
[2]

Savci S. 2012. Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia 1:287−92

doi: 10.1016/j.apcbee.2012.03.047
[3]

Cao P, Lu C, Yu Z. 2018. Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: application rate, timing, and fertilizer types. Earth System Science Data 10:969−84

doi: 10.5194/essd-10-969-2018
[4]

Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, et al. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20130164

doi: 10.1098/rstb.2013.0164
[5]

Eisa M, Ragauskaitė D, Adhikari S, Bella F, Baltrusaitis J. 2022. Role and responsibility of sustainable chemistry and engineering in providing safe and sufficient nitrogen fertilizer supply at turbulent times. ACS Sustainable Chemistry & Engineering 10:8997−9001

doi: 10.1021/acssuschemeng.2c03972
[6]

Muñoz-Huerta RF, Guevara-Gonzalez RG, Contreras-Medina LM, Torres-Pacheco I, Prado-Olivarez J, et al. 2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13:10823−43

doi: 10.3390/s130810823
[7]

Adhikari R, Li C, Kalbaugh K, Nemali K. 2020. A low-cost smartphone controlled sensor based on image analysis for estimating whole-plant tissue nitrogen (N) content in floriculture crops. Computers and Electronics in Agriculture 169:105173

doi: 10.1016/j.compag.2019.105173
[8]

Riccardi M, Mele G, Pulvento C, Lavini A, d'Andria R, et al. 2014. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosynthesis Research 120:263−72

doi: 10.1007/s11120-014-9970-2
[9]

Zhang H, Ge Y, Xie X, Atefi A, Wijewardane NK, et al. 2022. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods 18:60

doi: 10.1186/s13007-022-00892-0
[10]

Adhikari R, Nemali K. 2022. Whole-plant tissue nitrogen content measurement using image analyses in floriculture crops. Journal of Environmental Horticulture 40:22−32

doi: 10.24266/0738-2898-40.1.22
[11]

Lu B, Dao PD, Liu J, He Y, Shang J. 2020. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing 12:2659

doi: 10.3390/rs12162659
[12]

Kamarianakis Z, Panagiotakis S. 2023. Design and implementation of a low-cost chlorophyll content meter. Sensors 23:2699

doi: 10.3390/s23052699
[13]

Legendre R, Basinger NT, van Iersel MW. 2021. Low-cost chlorophyll fluorescence imaging for stress detection. Sensors 21:2055

doi: 10.3390/s21062055
[14]

Ghazal S, Kommineni N, Munir A. 2024. Comparative analysis of machine learning techniques using RGB imaging for nitrogen stress detection in maize. AI 5:1286−300

doi: 10.3390/ai5030062
[15]

Schwarz D, Thompson AJ, Kläring HP. 2014. Guidelines to use tomato in experiments with a controlled environment. Frontiers in Plant Science 5:625

doi: 10.3389/fpls.2014.00625
[16]

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9:676−82

doi: 10.1038/nmeth.2019
[17]

Strock C. 2021. Protocol for extracting basic color metrics from Images in ImageJ/Fiji. Zenodo

[18]

Chen L, Rycyna J, Yu P. 2024. Investigating the effect of hydrafiber and biochar as a substitute for peat-based substrate for zinnia (Zinnia elegans) and snapdragon (Antirrhinum majus) production. Horticulturae 10:589

doi: 10.3390/horticulturae10060589
[19]

R Core Team. 2024. R-4.4. 1 for Windows. R Foundation for Statistical Computing, Vienna, Austria. (Accessed 10 Sep 2024). www.R-project.org.

[20]

Cilia C, Panigada C, Rossini M, Meroni M, Busetto L, et al. 2014. Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sensing 6:6549−65

doi: 10.3390/rs6076549
[21]

Azimi S, Kaur T, Gandhi TK. 2021. A deep learning approach to measure stress level in plants due to Nitrogen deficiency. Measurement 173:108650

doi: 10.1016/j.measurement.2020.108650
[22]

Taha MF, Mao H, Wang Y, ElManawy AI, Elmasry G, et al. 2024. High-throughput analysis of leaf chlorophyll content in aquaponically grown lettuce using hyperspectral reflectance and RGB images. Plants 13:392

doi: 10.3390/plants13030392
[23]

Li D, Li C, Yao Y, Li M, Liu L. 2020. Modern imaging techniques in plant nutrition analysis: a review. Computers and Electronics in Agriculture 174:105459

doi: 10.1016/j.compag.2020.105459
[24]

Kim TH, Kim SM. 2024. Effects of SPAD value variations according to nitrogen application levels on rice yield and its components. Frontiers in Plant Science 15:1437371

doi: 10.3389/fpls.2024.1437371
[25]

Li T, Bi G, Harkess RL, Denny GC, Blythe EK, et al. 2018. Nitrogen rate, irrigation frequency, and container type affect plant growth and nutrient uptake of encore azalea 'Chiffon' . HortScience 53:560−66

doi: 10.21273/HORTSCI12817-17