| [1] |
Paz R, Rocco R, Reinoso H, Menéndez A, Pieckenstain F, et al. 2012. Comparatve study of alkaline, saline and mixed saline-alkaline stresses with regard to their effects on growth, nutrient accumulateon and root morphology of Lotus tenuis. Journal of Plant Growth Regulation 31(3):448−59 doi: 10.1007/s00344-011-9254-4 |
| [2] |
Hu H, Liu H, Du G, Yang F, Deng G, et al. 2019. Fiber and seed type of hemp (Cannabis satIva L.) responded differently to salt-alkali stress in seedling growth and physiological indices. Industrial Crops and Products 129:624−30 doi: 10.1016/j.indcrop.2018.12.028 |
| [3] |
Zhang X, Li S, Tang T, Liu Y, Tahir MM, et al. 2022. Comparison of morphological, physiological and related-gene expression responses to saline-alkali stress eight apple rootstock genotypes. Scientia Horticulturae 306:111455 doi: 10.1016/j.scienta.2022.111455 |
| [4] |
An J, Yao J, Xu R, You C, Wang X, et al. 2018. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response. Physiologia Plantarum 164(3):279−89 doi: 10.1111/ppl.12724 |
| [5] |
Foti C, Khah EM, Pavli OI. 2019. Germination profiling of lentil genotypes subjected to salinity stress. Plant Biology 21(3):480−86 doi: 10.1111/plb.12714 |
| [6] |
Hu S, Zhao R, Yang J, Wang Z, Hu X. 2024. Spermidine mediated endogenous nitric oxide coordinately boosts stability through antioxidant capacity and Na+/K+ transporters in tomato under saline-alkaline stress. Scientia Horticulturae 329:112973 doi: 10.1016/j.scienta.2024.112973 |
| [7] |
Zhu Y, Jia X, Wu Y, Hu Y, Cheng L, et al. 2020. Quantitative proteomic analysis of Malus halliana exposed to salt-alkali mixed stress reveals alterations in energy metabolism and stress regulation. Plant Growth Regulation 90(2):205−22 doi: 10.1007/s10725-019-00563-6 |
| [8] |
Wang H, Wang R, Jiang G, Yin H, Yan S, et al. 2023. Effect of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves. Acta Agronomica Sinica 49(1):211−24 |
| [9] |
Ci D, Qin F, Tang Z, Zhang G, Zhang J, et al. 2023. Arbuscular mycorrhizal fungi restored the saline-alkali soil and promoted the growth of peanut roots. Plants 12(19):3426 doi: 10.3390/plants12193426 |
| [10] |
Wang Y, Yang Y, Wang D. 2020. Effects of arbuscular mycorrhizal fungi on ion absorption and distribution in Leymus chinensis under saline-alkaline stress. Acta Prataculturae Sinica 29(12):95−104 doi: 10.11686/cyxb2020036 |
| [11] |
Gao X, Guo H, Zhang Q, Guo H, Zhang L, et al. 2020. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports 10:2084 doi: 10.1038/s41598-020-59180-3 |
| [12] |
Peng Z, Zulfiqar T, Yang H, Wang M, Zhang F. 2024. Effect of Arbuscular Mycorrhizal Fungi (AMF) on photosynthetic characteristics of cotton seedlings under saline-alkali stress. Scientific Reports 14:8633 doi: 10.1038/s41598-024-58979-8 |
| [13] |
Xie K, Ren Y, Chen A, Yang C, Zheng Q, et al. 2022. Plant nitrogen nutrition: the roles of arbuscular mycorrhizal fungi. Journal of Plant Physiology 269:153591 doi: 10.1016/j.jplph.2021.153591 |
| [14] |
Zhang D, Tong C, Wang Q, Bie S. 2024. Mycorrhizas affect physiological performance, antioxidant system, photosynthesis, endogenous hormones, and water content in cotton under salt stress. Plants 13(6):805 doi: 10.3390/plants13060805 |
| [15] |
Gong M, Tang M, Chen H, Zhang Q, Feng X. 2013. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New Forests 44(3):399−408 doi: 10.1007/s11056-012-9349-1 |
| [16] |
Liu C, Srivastava AK, Wu Q. 2017. Mycorrhizal fungi regulate root responses and leaf physiological activities in trifoliate orange. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 45:17−21 doi: 10.15835/nbha45110658 |
| [17] |
Miransari M, Abrishamchi A, Khoshbakht K, Niknam V. 2014. Plant hormones as signals in arbuscular mycorrhizal symbiosis. Critical Reviews in Biotechnology 34(2):123−33 doi: 10.3109/07388551.2012.731684 |
| [18] |
Zhou H, Chen Y, Zhai F, Zhang J, Zhang F, et al. 2020. Hydrogen sulfide promotes rice drought tolerance via reestablishing redox homeostasis and activation of ABA biosynthesis and signaling. Plant Physiology and Biochemistry 155:213−20 doi: 10.1016/j.plaphy.2020.07.038 |
| [19] |
Huang D, Ma M, Wang Q, Zhang M, Jing G, et al. 2020. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiology and Biochemistry 149:245−55 doi: 10.1016/j.plaphy.2020.02.020 |
| [20] |
Yang J, Guo X, Li W, Chen P, Cheng Y, et al. 2021. MdCCX2 of apple functions positively in modulation of salt tolerance. Environmental and Experimental Botany 192:104663 doi: 10.1016/j.envexpbot.2021.104663 |
| [21] |
Chen L, Yu J, Lu X, Wang Q, Wang S, et al. 2024. Iris typhifolia responses to saline–alkali stress: germination, antioxidant activity, hormones, and photosynthetic performance. Horticulturae 10(6):588 doi: 10.3390/horticulturae10060588 |
| [22] |
Jensen P, Halbrendt N, Fazio G, Makalowska I, Altman N, et al. 2012. Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. BMC Genomics 13:9 doi: 10.1186/1471-2164-13-9 |
| [23] |
Shi C, Li L, Li Q, Wei Z, Gao D. 2022. Comparison of drought resistance of rootstocks 'M9-T337' and 'M26' grafted with 'Huashuo' apple. Horticulture, Environment, and Biotechnology 63(3):299−310 doi: 10.1007/s13580-021-00398-z |
| [24] |
Guo S, Ruan B, Chen H, Guan X, Wang S, et al. 2018. Characterizing the spatiotemporal evolution of soil salinization in Hetao Irrigation District (China) using a remote sensing approach. International Journal of Remote Sensing 39(20):6805−25 doi: 10.1080/01431161.2018.1466076 |
| [25] |
Jin M, Li X, Li F, Huang Z. 2020. Effects of mixed saline-alkali stress on germination of rice. Chinese Journal of Eco-Agriculture 28(4):566−74 doi: 10.13930/j.cnki.cjea.190750 |
| [26] |
Hu X, Chen D, Yan F, Zheng X, Fang X. 2023. Global research trends on the effects of arbuscular mycorrhizal fungi on the soil carbon cycle: a bibliometric analysis. Ecological Indicators 158:111543 doi: 10.1016/j.ecolind.2023.111543 |
| [27] |
Song Z, Wang L, Lee M, Yue GH. 2023. The evolution and expression of stomatal regulators in C3 and C4 crops: implications on the divergent drought tolerance. Frontiers in Plant Science 14:838 doi: 10.3389/fpls.2023.1100838 |
| [28] |
Piao L, Wang Y, Liu X, Sun G, Zhang S, et al. 2022. Exogenous Hemin alleviated cadmium stress in maize (Zea mays L.) by enhancing leaf photosynthesis, AsA-GSH cycle and polyamine metabolism. Frontiers in Plant Science 13:993675 doi: 10.3389/fpls.2022.993675 |
| [29] |
Yan S, Chong P, Zhao M. 2022. Effect of salt stress on the photosynthetic characteristics and endogenous hormonesand: a comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings. Plant Signaling & Behavior 17(1):2031782 doi: 10.1080/15592324.2022.2031782 |
| [30] |
An Y, Gao Y, Tong S, Liu B. 2021. Morphological and physiological traits related to the response and adaption of Bolboschoenus planiculmis seedlings grown under salt-alkaline stressconditions. Frontiers in Plant Science 12:567782 doi: 10.3389/fpls.2021.567782 |
| [31] |
Fang S, Hou X, Liang X. 2021. Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science 12:104931 doi: 10.3389/fpls.2021.667458 |
| [32] |
Yang X, Li H, Jiang L, Tang X, Liu X, et al. 2020. Effects of arbuscular mycorrhiza fungi on the growth characteristics, root morphology, and ion distribution of Pyrus betulaefolia bunge under saline-alkaline stress. Forest Science 66(1):97−104 doi: 10.1093/forsci/fxz047 |
| [33] |
Rehman O, Uzair M, Farooq MS, Saleem B, Attacha S, et al. 2023. Comprehensive insights into the regulatory mechanisms of lncRNA in alkaline-salt stress tolerance in rice. Molecular Biology Reports 50(9):7381−92 doi: 10.1007/s11033-023-08648-2 |
| [34] |
Long J, Dong M, Wang C, Miao Y. 2023. Effects of drought and salt stress on seed germination and seedling growth of Elymus nutans. PeerJ 11:e15968 doi: 10.7717/peerj.15968 |
| [35] |
Zhang C, Meng W, Wang Y, Zhou Y, Wang S, et al. 2022. Comparative analysis of physiological, hormonal and transcriptomic responses reveal mechanisms of saline-alkali tolerance in autotetraploid rice (Oryza sativa L.). International Journal of Molecular Sciences 23(24):16146 doi: 10.3390/ijms232416146 |
| [36] |
Wen Y, Wu R, Qi D, Xu T, Chang W, et al. 2024. The effect of AMF combined with biochar on plant growth and soil quality under saline-alkali stress: insights from microbial community analysis. Ecotoxicology and Environmental Safety 281:116592 doi: 10.1016/j.ecoenv.2024.116592 |
| [37] |
Vaz M, Cochard H, Gazarini L, Graça J, Chaves MM, et al. 2012. Cork oak (Quercus suber L.) seedlings acclimate to elevated CO2 and water stress: photosynthesis, growth, wood anatomy and hydraulic conductivity. Trees 26:1145−57 doi: 10.1007/s00468-012-0691-x |
| [38] |
Zhu Y, Wu Y, Hu Y, Jia X, Zhao T, et al. 2019. Tolerance of two apple rootstocks to short-term salt stress: focus on chlorophyll degradation, photosynthesis, hormone and leaf ultrastructures. Acta Physiologiae Plantarum 41(6):87 doi: 10.1007/s11738-019-2877-y |
| [39] |
Zhai J, Xian X, Zhang Z, Wang Y. 2025. Nano-zinc oxide can enhance the tolerance of apple rootstock M9-T337 seedlings to saline alkali stress by initiating a variety of physiological and biochemical pathways. Plants 14(2):233 doi: 10.3390/plants14020233 |
| [40] |
Li N, Zhang Z, Gao S, Lv Y, Chen Z, et al. 2021. Different responses of two Chinese cabbage (Brassicarapa L. ssp. pekinensis) cultivars in photosynthetic characteristics and chloroplast ultrastructure to salt and alkali stress. Planta 254(5):102 doi: 10.1007/s00425-021-03754-6 |
| [41] |
Liu H, Wang Y, Tang M, Chen H. 2021. Arbuscular mycorrhiza protects the ultrastructure of mesophyll cells and photochemical activity of Lycium barbarum under salt stress. Pakistan Journal of Botany 53(1):329−35 doi: 10.30848/pjb2021-1(41) |
| [42] |
Wang W, Cao L, Chen W, Lu C, Hu Z, et al. 2023. Quercus dentata responds to Na2CO3 stress with salt crystal deposits: ultrastructure, and physiological–biochemical parameters of leaves. Trees 37(4):1001−11 doi: 10.1007/s00468-023-02400-w |
| [43] |
Wan S, Zhang Y, Liu L, Xiao Y, He J, et al. 2024. Comparative effects of salt and alkali stress on photosynthesis and antioxidant system in tea plant (Camellia sinensis). Plant Growth Regulation 103:565−79 doi: 10.1007/s10725-023-01115-9 |
| [44] |
Liu H, Song J, Dong L, Wang D, Zhang S, et al. 2017. Physiological responses of three soybean species (Glycine soja, G. gracilis and G. max cv. Melrose) to salinity stress. Journal of Plant Research 130(4):723−33 doi: 10.1007/s10265-017-0929-1 |
| [45] |
Lu X, Ma L, Zhang C, Yan H, Bao J, et al. 2022. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling. BMC Plant Biology 22(1):528 doi: 10.1186/s12870-022-03907-z |
| [46] |
Sun Q, Yamada T, Han Y, Takano T. 2021. Influence of salt stress on C4 photosynthesis in Miscanthus sinensis Anderss. Plant Biology 23(1):44−56 doi: 10.1111/plb.13192 |
| [47] |
Che Y, Fan D, Teng Z, Yao T, Wang Z, et al. 2023. Potassium alleviates over-reduction of the photosynthetic electron transport chain and helps to maintain photosynthetic function under salt-stress. Physiologia Plantarum 175(4):e13981 doi: 10.1111/ppl.13981 |
| [48] |
Yang Y, Han X, Liang Y, Ghosh A, Chen J, et al. 2015. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis and antioxidant enzymes in Robinia pseudoacacia L. PLoS One 10(12):0145726 doi: 10.1371/journal.pone.0145726 |
| [49] |
Tian Y, Xu J, Li L, Farooq TH, Ma X, et al. 2024. Effect of arbuscular mycorrhizal symbiosis on growth and biochemical characteristics of Chinese fir (Cunninghamia lanceolata) seedlings under low phosphorus environment. PeerJ 12:e17138 doi: 10.7717/peerj.17138 |
| [50] |
Zhou H, Shi H, Yang Y, Feng X, Chen X, et al. 2024. Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics 51(1):16−34 doi: 10.1016/j.jgg.2023.08.007 |
| [51] |
Mao J, Zhang D, Li K, Liu Z, Liu X, et al. 2017. Effect of exogenous Brassinolide (BR) application on the morphology, hormone status and gene expression of developing lateral roots in Malus hupehensis. Plant Growth Regulation 82(3):391−401 doi: 10.1007/s10725-017-0264-5 |
| [52] |
Adhikari A, Aneefi A, Sisuvanh H, Singkham S, Pius MV, et al. 2023. Dynamics of humic acid, silicon, and biochar under heavy metal, drought, and salinity with special reference to phytohormones, antioxidants, and melatonin synthesis in rice. International Journal of Molecular Sciences 24(24):17369 doi: 10.3390/ijms242417369 |
| [53] |
Liu X, Liang W, Li Y, Li M, Ma B, et al. 2019. Transcriptome analysis reveals the effects of alkali stress on root system architecture and endogenous hormones in apple rootstocks. Journal of Integrative Agricultur 18(10):2264−71 doi: 10.1016/S2095-3119(19)62706-1 |
| [54] |
Maggio A, Barbieri G, Raimondi G, de Pascale S. 2010. Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. Journal of Plant Growth Regulation 29(1):63−72 doi: 10.1007/s00344-009-9114-7 |
| [55] |
Yu Z, Duan X, Luo L, Dai S, Ding Z, et al. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science 25(11):1117−30 doi: 10.1016/j.tplants.2020.06.008 |
| [56] |
Xian X, Zhang Z, Li C, Ding L, Guo H, et al. 2023. Comprehensive analysis revealed that titanium dioxide nanoparticles could strengthen the resistance of apple rootstock B9 to saline-alkali stress. Functional Plant Biology 51:FP23126 doi: 10.1071/FP23126 |
| [57] |
Kakabouki I, Stavropoulos P, Roussis I, Mavroeidis A, Bilalis D. 2023. Contribution of arbuscular mycorrhizal fungi (AMF) in improving the growth and yield performances of flax (Linum usitatissimum L.) to salinity stress. Agronomy 13(9):2416 doi: 10.3390/agronomy13092416 |
| [58] |
Puccio G, Ingraffia R, Mercati F, Amato G, Giambalvo D, et al. 2023. Transcriptome changes induced by Arbuscular mycorrhizal symbiosis in leaves of durum wheat (Triticum durum Desf.) promote higher salt tolerance. Scientific Reports 13:116 doi: 10.1038/s41598-022-26903-7 |
| [59] |
Tian X, He M, Wang Z, Zhang J, Song Y, et al. 2015. Application of nitric oxide and Calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regulation 77(3):343−56 doi: 10.1007/s10725-015-0069-3 |
| [60] |
Wu H. 2018. Plant salt tolerance and Na+ sensing and transport. The Crop Journal 6(3):215−25 doi: 10.1016/j.cj.2018.01.003 |
| [61] |
Zhang B, Shi F, Zheng X, Pan H, Wen Y, et al. 2023. Effects of AMF compound inoculants on growth, ion homeostasis, and salt tolerance-related gene expression in Oryza sativa L. under salt treatments. Rice 16(1):18 doi: 10.1186/s12284-023-00635-2 |
| [62] |
Nazari Deljou MJ, Marouf A, Hamedan H. 2014. Effect of inoculation with arbuscular mycorrhizal fungi (AMF) on gerbera cut flower (Gerbera jamesonii) production in soilless cultivation. Acta Horticulturae 1034:417−22 doi: 10.17660/ActaHortic.2014.1034.51 |
| [63] |
Sarathambal C, Sivaranjani R, Srinivasan V, Alagupalamuthirsolai M, Subila KP, et al. 2023. Effect of arbuscular mycorrhizal inoculation on growth, mineral nutrient uptake, photosynthesis and antioxidant activities of black pepper cuttings. Journal of Plant Nutrition 46:2508−24 doi: 10.1080/01904167.2022.2160736 |
| [64] |
Zhou L, Wang Y, Alqahtani MD, Wu Q. 2023. Positive changes in fruit quality, leaf antioxidant defense system, and soil fertility of Beni-Madonna Tangor Citrus (Citrus nanko × C. amakusa) after field AMF inoculation. Horticulturae 9(12):1324 doi: 10.3390/horticulturae9121324 |
| [65] |
Guo H, Huang Z, Li M, Hou Z. 2020. Growth, ionic homeostasisand physiological responses of cotton under different salt and alkali stresses. Scientific Reports 10:21844 doi: 10.1038/s41598-020-79045-z |