[1]

Ali Chowdhary A, Mishra S, Mehrotra S, Upadhyay SK, Bagal D, et al. 2023. Plant transcription factors: an overview of their role in plant life. In Plant Transcription Factors, eds. Srivastava V, Mishra S, Mehrotra S, Upadhyay SK. Elsevier. pp. 3−20. doi: 10.1016/B978-0-323-90613-5.00003-0

[2]

Khan FS, Goher F, Hu CG, Zhang JZ. 2024. WUSCHEL-related homeobox (WOX) transcription factors: key regulators in combating abiotic stresses in plants. Horticulture Advances 2:2

doi: 10.1007/s44281-023-00023-2
[3]

Cao J, Yuan J, Zhang Y, Chen C, Zhang B, et al. 2023. Multi-layered roles of BBX proteins in plant growth and development. Stress Biology 3:1

doi: 10.1007/s44154-022-00080-z
[4]

Khanna R, Kronmiller B, Maszle DR, Coupland G, Holm M, et al. 2009. The Arabidopsis B-Box Zinc Finger Family. The Plant Cell 21:3416−20

doi: 10.1105/tpc.109.069088
[5]

Huang J, Zhao X, Weng X, Wang L, Xie W. 2012. The rice B-box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis. PloS One 7:e48242

doi: 10.1371/journal.pone.0048242
[6]

Lira BS, Oliveira MJ, Shiose L, Wu RTA, Rosado D, et al. 2020. Light and ripening-regulated BBX protein-encoding genes in Solanum lycopersicum. Scientific Reports 10:19235

doi: 10.1038/s41598-020-76131-0
[7]

Shi K, Zhao G, Li Z, Zhou J, Wu L, et al. 2024. Genome-wide identification of B-box gene family and candidate light-related member analysis of tung tree (Vernicia fordii). International Journal of Molecular Sciences 25:1977

doi: 10.3390/ijms25041977
[8]

Li S, Guo S, Gao X, Wang X, Liu Y, et al. 2024. Genome-wide identification of B-box zinc finger (BBX) gene family in Medicago sativa and their roles in abiotic stress responses. BMC Genomics 25:110

doi: 10.1186/s12864-024-10036-4
[9]

Yin L, Wu R, An R, Feng Y, Qiu Y, et al. 2024. Genome-wide identification, molecular evolution and expression analysis of the B-box gene family in mung bean (Vigna radiata L.). BMC Plant Biology 24:532

doi: 10.1186/s12870-024-05236-9
[10]

Azam M, Usman M, Manzoor MA, Yao L, Ma X, et al. 2024. Comprehensive characterization and expression profiling of BBX gene family in soybean in response to UV-B stress. Plant Stress 13:100560

doi: 10.1016/j.stress.2024.100560
[11]

Jiao Y, Lau OS, Deng XW. 2007. Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics 8:217−30

doi: 10.1038/nrg2049
[12]

Yadav A, Ravindran N, Singh D, Rahul PV, Datta S. 2020. Role of Arabidopsis BBX proteins in light signaling. Journal of Plant Biochemistry and Biotechnology 29:623−35

doi: 10.1007/s13562-020-00597-2
[13]

Xu D. 2020. COP1 and BBXs-HY5-mediated light signal transduction in plants. New Phytologist 228:1748−53

doi: 10.1111/nph.16296
[14]

Song Z, Bian Y, Liu J, Sun Y, Xu D. 2020. B-box proteins: Pivotal players in light-mediated development in plants. Journal of Integrative Plant Biology 62:1293−309

doi: 10.1111/jipb.12935
[15]

Talar U, Kiełbowicz-Matuk A. 2021. Beyond Arabidopsis: BBX regulators in crop plants. International Journal of Molecular Sciences 22:2906

doi: 10.3390/ijms22062906
[16]

Putterill J, Robson F, Lee K, Simon R, Coupland G. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847−57

doi: 10.1016/0092-8674(95)90288-0
[17]

Wang MJ, Ding L, Liu XH, Liu JX. 2021. Two B-box domain proteins, BBX28 and BBX29, regulate flowering time at low ambient temperature in Arabidopsis. Plant Molecular Biology 106:21−32

doi: 10.1007/s11103-021-01123-1
[18]

Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, et al. 2002. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and Cell Physiology 43:1096−105

doi: 10.1093/pcp/pcf156
[19]

Gangappa SN, Botto JF. 2014. The BBX family of plant transcription factors. Trends in Plant Science 19:460−70

doi: 10.1016/j.tplants.2014.01.010
[20]

Chang CJ, Li YH, Chen LT, Chen WC, Hsieh WP, et al. 2008. LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. The Plant Journal 54:205−19

doi: 10.1111/j.1365-313X.2008.03401.x
[21]

Crocco CD, Botto JF. 2013. BBX proteins in green plants: insights into their evolution, structure, feature and functional diversification. Gene 531:44−52

doi: 10.1016/j.gene.2013.08.037
[22]

Bai S, Tao R, Yin L, Ni J, Yang Q, et al. 2019. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit. The Plant Journal 100:1208−23

doi: 10.1111/tpj.14510
[23]

Ma GP, Zhao DQ, Wang TW, Zhou LB, Li GL. 2019. BBX32 interacts with AGL24 involved in flowering time control in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47:34−45

doi: 10.15835/nbha47111205
[24]

Qi Q, Gibson A, Fu X, Zheng M, Kuehn R, et al. 2012. Involvement of the N-terminal B-box domain of Arabidopsis BBX32 protein in interaction with soybean BBX62 protein. Journal of Biological Chemistry 287:31482−93

doi: 10.1074/jbc.M112.346940
[25]

Liu Y, Lin G, Yin C, Fang Y. 2020. B-box transcription factor 28 regulates flowering by interacting with constans. Scientific Reports 10:17789

doi: 10.1038/s41598-020-74445-7
[26]

Wang CQ, Guthrie C, Sarmast MK, Dehesh K. 2014. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in Arabidopsis. The Plant Cell 26:3589−602

doi: 10.1105/tpc.114.130252
[27]

Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, et al. 2006. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. The Plant Journal 46:462−76

doi: 10.1111/j.1365-313X.2006.02706.x
[28]

Gnesutta N, Kumimoto RW, Swain S, Chiara M, Siriwardana C, et al. 2017. CONSTANS imparts DNA sequence specificity to the histone fold NF-YB/NF-YC dimer. The Plant Cell 29:1516−32

doi: 10.1105/tpc.16.00864
[29]

Lv X, Zeng X, Hu H, Chen L, Zhang F, et al. 2021. Structural insights into the multivalent binding of the Arabidopsis FLOWERING LOCUS T promoter by the CO–NF–Y master transcription factor complex. The Plant Cell 33:1182−95

doi: 10.1093/plcell/koab016
[30]

Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, et al. 2006. CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis. The Plant Cell 18:2971−84

doi: 10.1105/tpc.106.043299
[31]

Takagi H, Hempton AK, Imaizumi T. 2023. Photoperiodic flowering in Arabidopsis: Multilayered regulatory mechanisms of CONSTANS and the florigen FLOWERING LOCUS T. Plant communications 4:100552

doi: 10.1016/j.xplc.2023.100552
[32]

Holm M, Hardtke CS, Gaudet R, Deng XW. 2001. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. The EMBO Journal 20:118−27

doi: 10.1093/emboj/20.1.118
[33]

Datta S, Hettiarachchi GM, Deng XW, Holm M. 2006. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. The Plant Cell 18:70−84

doi: 10.1105/tpc.105.038182
[34]

Laubinger S, Marchal V, Le Gourrierec J, Wenkel S, Adrian J, et al. 2006. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133:3213−22

doi: 10.1242/dev.02481
[35]

Rodrigues VL, Dolde U, Sun B, Blaakmeer A, Straub D, et al. 2021. A microProtein repressor complex in the shoot meristem controls the transition to flowering. Plant Physiology 187:187−202

doi: 10.1093/plphys/kiab235
[36]

Graeff M, Straub D, Eguen T, Dolde U, Rodrigues V, et al. 2016. MicroProtein-mediated recruitment of CONSTANS into a TOPLESS trimeric complex represses flowering in Arabidopsis. PLoS genetics 12:e1005959

doi: 10.1371/journal.pgen.1005959
[37]

Shin SY, Kim H, Woo SG, Hong JC, Song YH. 2023. Analysis of protein binding characteristics among Arabidopsis BBX protein family. Applied Biological Chemistry 66:29

doi: 10.1186/s13765-023-00784-4
[38]

Wang C-Q, Sarmast MK, Jiang J, Dehesh K. 2015. The transcriptional regulator BBX19 promotes hypocotyl growth by facilitating COP1-mediated EARLY FLOWERING3 degradation in Arabidopsis. The Plant Cell 27:1128−39

doi: 10.1105/tpc.15.00044
[39]

Song YH, Song NY, Shin SY, Kim HJ, Yun DJ, et al. 2008. Isolation of CONSTANS as a TGA4/OBF4 interacting protein. Molecules & Cells 25:559−65

[40]

Crocco CD, Locascio A, Escudero CM, Alabadí D, Blázquez MA, et al. 2015. The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana. Nature Communications 6:6202

doi: 10.1038/ncomms7202
[41]

Wang L, Cheng H, Wang Q, Si C, Yang Y, et al. 2021. CmRCD1 represses flowering by directly interacting with CmBBX8 in summer Chrysanthemum. Horticulture Research 8:79

doi: 10.1038/s41438-021-00516-z
[42]

Li J, Ai G, Wang Y, Ding Y, Hu X, et al. 2024. A truncated B-box zinc finger transcription factor confers drought sensitivity in modern cultivated tomatoes. Nature Communications 15:8013

doi: 10.1038/s41467-024-51699-7
[43]

Song YH, Lee I, Lee SY, Imaizumi T, Hong JC. 2012. CONSTANS and ASYMMETRIC LEAVES 1 complex is involved in the induction of FLOWERING LOCUS T in photoperiodic flowering in Arabidopsis. The Plant Journal 69:332−42

doi: 10.1111/j.1365-313X.2011.04793.x
[44]

Serrano-Bueno G, Said FE, de los Reyes P, Lucas-Reina EI, Isabel Ortiz-Marchena M, et al. 2020. CONSTANS–FKBP12 interaction contributes to modulation of photoperiodic flowering in Arabidopsis. The Plant Journal 101:1287−302

doi: 10.1111/tpj.14590
[45]

Taylor CA, Cobb MH. 2022. CCT and CCT-like modular protein interaction domains in WNK signaling. Molecular Pharmacology 101:201−12

doi: 10.1124/molpharm.121.000307
[46]

Kurup S, Jones HD, Holdsworth MJ. 2000. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. The Plant Journal 21:143−55

doi: 10.1046/j.1365-313x.2000.00663.x
[47]

Liu B, Zuo Z, Liu H, Liu X, Lin C. 2011. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes & development 25:1029−34

doi: 10.1101/gad.2025011
[48]

Du SS, Li L, Li L, Wei X, Xu F, et al. 2020. Photoexcited cryptochrome2 interacts directly with TOE1 and TOE2 in flowering regulation. Plant Physiology 184:487−505

doi: 10.1104/pp.20.00486
[49]

Liu Y, Li X, Ma D, Chen Z, Wang JW, et al. 2018. CIB 1 and CO interact to mediate CRY 2-dependent regulation of flowering. EMBO Reports 19:e45762

doi: 10.15252/embr.201845762
[50]

Datta S, Johansson H, Hettiarachchi C, Irigoyen ML, Desai M, et al. 2008. LZF1/SALT TOLERANCE HOMOLOG3, an Arabidopsis B-box protein involved in light-dependent development and gene expression, undergoes COP1-mediated ubiquitination. The Plant Cell 20:2324−38

doi: 10.1105/tpc.108.061747
[51]

Xiong C, Luo D, Lin A, Zhang C, Shan L, et al. 2019. A tomato B-box protein SlBBX 20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1, and is targeted for 26S proteasome-mediated degradation. New Phytologist 221:279−94

doi: 10.1111/nph.15373
[52]

Xu D, Jiang Y, Li J, Lin F, Holm M, Deng XW. 2016. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proceedings of the National Academy of Sciences of the United States of America 113:7655−60

doi: 10.1073/pnas.1607687113
[53]

Zhao X, Heng Y, Wang X, Deng XW, Xu D. 2020. A positive feedback loop of BBX11–BBX21–HY5 promotes photomorphogenic development in Arabidopsis. Plant Communications 1:100045

doi: 10.1016/j.xplc.2020.100045
[54]

Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, et al. 2010. cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. The Plant Cell 22:1425−40

doi: 10.1105/tpc.110.074682
[55]

Gil KE, Park MJ, Lee HJ, Park YJ, Han SH, et al. 2017. Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering. The Plant Journal 89:128−40

doi: 10.1111/tpj.13351
[56]

Ma H, Pei J, Zhuo J, Tang Q, Hou D, et al. 2024. The CONSTANS-LIKE gene PeCOL13 regulates flowering through intron-retained alternative splicing in Phyllostachys edulis. International Journal of Biological Macromolecules 274:133393

doi: 10.1016/j.ijbiomac.2024.133393
[57]

Huang CK, Lin WD, Wu SH. 2022. An improved repertoire of splicing variants and their potential roles in Arabidopsis photomorphogenic development. Genome Biology 23:50

doi: 10.1186/s13059-022-02620-2
[58]

Niu F, Rehmani MS, Yan J. 2024. Multilayered regulation and implication of flowering time in plants. Plant Physiology and Biochemistry 213:108842

doi: 10.1016/j.plaphy.2024.108842
[59]

Ouyang Y, Zhang X, Wei Y, He Y, Zhang X, et al. 2022. AcBBX5, a B-box transcription factor from pineapple, regulates flowering time and floral organ development in plants. Frontiers in Plant Science 13:1060276

doi: 10.3389/fpls.2022.1060276
[60]

Shalmani A, Jing XQ, Shi Y, Muhammad I, Zhou MR, et al. 2019. Characterization of B-box gene family and their expression profiles under hormonal, abiotic and metal stresses in Poaceae plants. BMC Genomics 20:27

doi: 10.1186/s12864-018-5336-z
[61]

Feng Z, Li M, Li Y, Yang X, Wei H, et al. 2021. Comprehensive identification and expression analysis of B-box genes in cotton. BMC Genomics 22:439

doi: 10.1186/s12864-021-07770-4
[62]

Tu Z, Xia H, Yang L, Zhai X, Shen Y, Li H. 2022. The roles of microRNA-long non-coding RNA-mRNA networks in the regulation of leaf and flower development in Liriodendron chinense. Frontiers in Plant Science 13:816875

doi: 10.3389/fpls.2022.816875
[63]

Li F, Sun J, Wang D, Bai S, Clarke AK, et al. 2014. The B-box family gene STO (BBX24) in Arabidopsis thaliana regulates flowering time in different pathways. PLoS One 9:e87544

doi: 10.1371/journal.pone.0087544
[64]

Shalmani A, Ullah U, Tai L, Zhang R, Jing XQ, et al. 2023. OsBBX19-OsBTB97/OsBBX11 module regulates spikelet development and yield production in rice. Plant Science 334:111779

doi: 10.1016/j.plantsci.2023.111779
[65]

Luccioni L, Krzymuski M, Sánchez-Lamas M, Karayekov E, Cerdán PD, et al. 2019. CONSTANS delays Arabidopsis flowering under short days. The Plant Journal 97:923−32

doi: 10.1111/tpj.14171
[66]

Tripathi P, Carvallo M, Hamilton EE, Preuss S, Kay SA. 2017. Arabidopsis B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering. Proceedings of the National Academy of Sciences of the United States of America 114:172−77

doi: 10.1073/pnas.1616459114
[67]

Steinbach Y. 2019. The Arabidopsis thaliana CONSTANS-LIKE 4 (COL4) – a modulator of flowering time. Frontiers in Plant Science 10:651

doi: 10.3389/fpls.2019.00651
[68]

Hassidim M, Harir Y, Yakir E, Kron I, Green RM. 2009. Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta 230:481−91

doi: 10.1007/s00425-009-0958-7
[69]

Cheng XF, Wang ZY. 2005. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. The Plant Journal 43:758−68

doi: 10.1111/j.1365-313X.2005.02491.x
[70]

Ordoñez-Herrera N, Trimborn L, Menje M, Henschel M, Robers L, et al. 2018. The transcription factor COL12 is a substrate of the COP1/SPA E3 ligase and regulates flowering time and plant architecture. Plant Physiology 176:1327−40

doi: 10.1104/pp.17.01207
[71]

Rahul PV, Yadukrishnan P, Sasidharan A, Datta S. 2024. The B-box protein BBX13/COL15 suppresses photoperiodic flowering by attenuating the action of CONSTANS in Arabidopsis. Plant, Cell & Environment 47:5358−71

doi: 10.1111/pce.15120
[72]

Susila H, Nasim Z, Gawarecka K, Jung J, Jin S, et al. 2023. Chloroplasts prevent precocious flowering through a GOLDEN2-LIKE–B-BOX DOMAIN PROTEIN module. Plant Communications 4:100515

doi: 10.1016/j.xplc.2023.100515
[73]

Takase T, Kakikubo Y, Nakasone A, Nishiyama Y, Yasuhara M, et al. 2011. Characterization and transgenic study of CONSTANS-LIKE8 (COL8) gene in Arabidopsis thaliana: expression of 35S:COL8 delays flowering under long-day conditions. Plant Biotechnology Journal 28:439−46

doi: 10.5511/plantbiotechnology.11.0823b
[74]

Lee YS, Jeong DH, Lee DY, Yi J, Ryu CH, et al. 2010. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. The Plant Journal 63:18−30

doi: 10.1111/j.1365-313X.2010.04226.x
[75]

Liu H, Gu F, Dong S, Liu W, Wang H, et al. 2016. CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway. Biochemical and Biophysical Research Communications 479:173−78

doi: 10.1016/j.bbrc.2016.09.013
[76]

Tan J, Jin M, Wang J, Wu F, Sheng P, et al. 2016. OsCOL10, a CONSTANS-Like gene, functions as a flowering time repressor downstream of Ghd7 in rice. Plant and Cell Physiology 57:798−812

doi: 10.1093/pcp/pcw025
[77]

Bai B, Zhao J, Li Y, Zhang F, Zhou J, et al. 2016. OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice. Plant Science 247:25−34

doi: 10.1016/j.plantsci.2016.02.017
[78]

Zhang L, Li Q, Dong H, He Q, Liang L, et al. 2015. Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice. Scientific Reports 5:7663

doi: 10.1038/srep07663
[79]

Wu W, Zheng XM, Chen D, Zhang Y, Ma W, et al. 2017. OsCOL16, encoding a CONSTANS-like protein, represses flowering by up-regulating Ghd7 expression in rice. Plant Science 260:60−9

doi: 10.1016/j.plantsci.2017.04.004
[80]

Sheng P, Wu F, Tan J, Zhang H, Ma W, et al. 2016. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice. Plant Molecular Biology 92:209−22

doi: 10.1007/s11103-016-0506-3
[81]

Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, et al. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell 12:2473−83

doi: 10.1105/tpc.12.12.2473
[82]

Wu W, Zhang Y, Zhang M, Zhan X, Shen X, et al. 2018. The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1. Biochemical and biophysical research communications 495:1349−55

doi: 10.1016/j.bbrc.2017.11.095
[83]

Kim SK, Yun CH, Lee JH, Jang YH, Park HY, et al. 2008. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228:355−65

doi: 10.1007/s00425-008-0742-0
[84]

Wu W, Zheng XM, Lu G, Zhong Z, Gao H, et al. 2013. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proceedings of the National Academy of Sciences 110:2775−80

doi: 10.1073/pnas.1213962110
[85]

Zhai Y, Zhu Y, Wang Q, Wang G, Yu Y, et al. 2023. BBX7 interacts with BBX8 to accelerate flowering in chrysanthemum. Molecular Horticulture 3:7

doi: 10.1186/s43897-023-00055-2
[86]

Wang Q, Wang L, Cheng H, Wang S, Li J, et al. 2024. Two B-box proteins orchestrate vegetative and reproductive growth in summer Chrysanthemum. Plant, Cell & Environment 47:2923−35

doi: 10.1111/pce.14919
[87]

Yu Z, Chen X, Li Y, Shah SHA, Xiao D, et al. 2024. ETHYLENE RESPONSE FACTOR 070 inhibits flowering in Pak-choi by indirectly impairing BcLEAFY expression. Plant Physiology 195:986−1004

doi: 10.1093/plphys/kiae021
[88]

Ping Q, Cheng P, Huang F, Ren L, Cheng H, et al. 2019. The heterologous expression in Arabidopsis thaliana of a chrysanthemum gene encoding the BBX family transcription factor CmBBX13 delays flowering. Plant Physiology and Biochemistry 144:480−87

doi: 10.1016/j.plaphy.2019.10.019
[89]

Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, et al. 2014. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. The Plant Cell 26:2038−54

doi: 10.1105/tpc.114.124867
[90]

Ye Y, Liu Y, Li X, Wang G, Zhou Q, et al. 2021. An evolutionary analysis of B-box transcription factors in strawberry reveals the role of FaBBx28c1 in the regulation of flowering time. International Journal of Molecular Sciences 22:11766

doi: 10.3390/ijms222111766
[91]

Kurokura T, Samad S, Koskela E, Mouhu K, Hytönen T. 2017. Fragaria vesca CONSTANS controls photoperiodic flowering and vegetative development. Journal of Experimental Botany 68:4839−50

doi: 10.1093/jxb/erx301
[92]

Cao D, Li Y, Lu S, Wang J, Nan H, et al. 2015. GmCOL1a and GmCOL1b function as flowering repressors in soybean under long-day conditions. Plant and Cell Physiology 56:2409−22

doi: 10.1093/pcp/pcv152
[93]

Dally N, Xiao K, Holtgräwe D, Jung C. 2014. The B2 flowering time locus of beet encodes a zinc finger transcription factor. Proceedings of the National Academy of Sciences 111:10365−70

doi: 10.1073/pnas.1404829111
[94]

Dally N, Eckel M, Batschauer A, Höft N, Jung C. 2018. Two CONSTANS-LIKE genes jointly control flowering time in beet. Scientific Reports 8:16120

doi: 10.1038/s41598-018-34328-4
[95]

Chia T, Müller A, Jung C, Mutasa-Göttgens ES. 2008. Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus. Journal of Experimental Botany 59:2735−48

doi: 10.1093/jxb/ern129
[96]

Campoli C, Drosse B, Searle I, Coupland G, von Korff M. 2012. Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. The Plant Journal 69:868−80

doi: 10.1111/j.1365-313X.2011.04839.x
[97]

Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H. 2012. The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. Journal of Experimental Botany 63:773−84

doi: 10.1093/jxb/err299
[98]

Mulki MA, von Korff M. 2016. CONSTANS controls floral repression by up-regulating VERNALIZATION2 (VRN-H2) in barley. Plant Physiology 170:325−37

doi: 10.1104/pp.15.01350
[99]

Almada R, Cabrera N, Casaretto JA, Ruiz-Lara S, González Villanueva E. 2009. VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds. Plant Cell Reports 28:1193−203

doi: 10.1007/s00299-009-0720-4
[100]

Yang S, Weers BD, Morishige DT, Mullet JE. 2014. CONSTANS is a photoperiod regulated activator of flowering in sorghum. BMC Plant Biology 14:148

doi: 10.1186/1471-2229-14-148
[101]

Meng X, Muszynski MG, Danilevskaya ON. 2011. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. The Plant Cell 23:942−60

doi: 10.1105/tpc.110.081406
[102]

Lu J, Sun J, Jiang A, Bai M, Fan C, et al. 2020. Alternate expression of CONSTANS-LIKE 4 in short days and CONSTANS in long days facilitates day-neutral response in Rosa chinensis. Journal of Experimental Botany 71:4057−68

doi: 10.1093/jxb/eraa161
[103]

Liang RZ, Luo C, Liu Y, Hu WL, Guo YH, et al. 2023. Overexpression of two CONSTANS-like 2 (MiCOL2) genes from mango delays flowering and enhances tolerance to abiotic stress in transgenic Arabidopsis. Plant Science 327:111541

doi: 10.1016/j.plantsci.2022.111541
[104]

Liu Y, Luo C, Lan M, Guo Y, Li R, et al. 2024. MiCOL6, MiCOL7A and MiCOL7B isolated from mango regulate flowering and stress response in transgenic Arabidopsis. Physiologia Plantarum 176:e14242

doi: 10.1111/ppl.14242
[105]

Xu D, Liu X, Guo C, Lin L, Yin R. 2023. The B-box transcription factor 4 regulates seedling photomorphogenesis and flowering in tomato. Scientia Horticulturae 309:111692

doi: 10.1016/j.scienta.2022.111692
[106]

Hanano S, Goto K. 2011. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. The Plant Cell 23:3172−84

doi: 10.1105/tpc.111.088641
[107]

Shim JS, Jang G. 2020. Environmental signal-dependent regulation of flowering time in rice. International Journal of Molecular Sciences 21:6155

doi: 10.3390/ijms21176155
[108]

Chen R, Deng Y, Ding Y, Guo J, Qiu J, et al. 2022. Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences 65:33−92

doi: 10.1007/s11427-021-2024-0
[109]

Miller TA, Muslin EH, Dorweiler JE. 2008. A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta 227:1377−88

doi: 10.1007/s00425-008-0709-1
[110]

Park HY, Lee SY, Seok HY, Kim SH, Sung ZR, et al. 2011. EMF1 interacts with EIP1, EIP6 or EIP9 involved in the regulation of flowering time in Arabidopsis. Plant and Cell Physiology 52:1376−88

doi: 10.1093/pcp/pcr084
[111]

Sarid-Krebs L, Panigrahi KC, Fornara F, Takahashi Y, Hayama R, et al. 2015. Phosphorylation of CONSTANS and its COP 1-dependent degradation during photoperiodic flowering of Arabidopsis. The Plant Journal 84:451−63

doi: 10.1111/tpj.13022
[112]

Song Z, Yan T, Liu J, Bian Y, Heng Y, et al. 2020. BBX28/BBX29, HY5 and BBX30/31 form a feedback loop to fine-tune photomorphogenic development. The Plant Journal 104:377−90

doi: 10.1111/tpj.14929
[113]

Yu B, Hu Y, Hou X. 2024. More than flowering: CONSTANS plays multifaceted roles in plant development and stress responses. Journal of Integrative Plant Biology 67:425−39

doi: 10.1111/jipb.13798
[114]

Vaishak KP, Yadukrishnan P, Bakshi S, Kushwaha AK, Ramachandran H, et al. 2019. The B-box bridge between light and hormones in plants. Journal of Photochemistry and Photobiology B: Biology 191:164−74

doi: 10.1016/j.jphotobiol.2018.12.021
[115]

Han X, Kui M, Xu T, Ye J, Du J, et al. 2023. CO interacts with JAZ repressors and bHLH subgroup IIId factors to negatively regulate jasmonate signaling in Arabidopsis seedlings. The Plant Cell 35:852−73

doi: 10.1093/plcell/koac331
[116]

Xu F, Li T, Xu PB, Li L, Du SS, et al. 2016. DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis. FEBS Letters 590:541−49

doi: 10.1002/1873-3468.12076
[117]

Xie Y, Miao T, Lyu S, Huang Y, Shu M, et al. 2024. Arabidopsis ERD15 regulated by BBX24 plays a positive role in UV-B signaling. Plant Science 343:112077

doi: 10.1016/j.plantsci.2024.112077
[118]

Endo M, Tanigawa Y, Murakami T, Araki T, Nagatani A. 2013. PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proceedings of the National Academy of Sciences 110:18017−22

doi: 10.1073/pnas.1310631110
[119]

Wang P, Gong R, Yang Y, Yu S. 2019. Ghd8 controls rice photoperiod sensitivity by forming a complex that interacts with Ghd7. BMC plant biology 19:462

doi: 10.1186/s12870-019-2053-y
[120]

Nemoto Y, Nonoue Y, Yano M, Izawa T. 2016. Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. The Plant Journal 86:221−33

doi: 10.1111/tpj.13168
[121]

Cho LH, Yoon J, Wai AH, An G. 2018. Histone deacetylase 701 (HDT701) induces flowering in rice by modulating expression of OsIDS1. Molecules and cells 41:665−75

doi: 10.14348/molcells.2018.0148
[122]

Zhou S, Zhu S, Cui S, Hou H, Wu H, et al. 2021. Transcriptional and post-transcriptional regulation of heading date in rice. New Phytologist 230:943−56

doi: 10.1111/nph.17158
[123]

Cheng H, Yu Y, Zhai Y, Wang L, Wang L, et al. 2023. An ethylene-responsive transcription factor and a B-box protein coordinate vegetative growth and photoperiodic flowering in chrysanthemum. Plant, Cell & Environment 46:440−50

doi: 10.1111/pce.14488
[124]

Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L. 2016. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. Journal of Experimental Botany 67:6309−22

doi: 10.1093/jxb/erw384
[125]

Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K, et al. 2005. Tobacco bZIP transcription factor TGA2. 2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. The Plant Journal 44:100−13

doi: 10.1111/j.1365-313X.2005.02513.x
[126]

Li Y, Shi Y, Li M, Fu D, Wu S, et al. 2021. The CRY2–COP1–HY5–BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. The Plant Cell 33:3555−73

doi: 10.1093/plcell/koab215