[1]

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, et al. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57−60

doi: 10.1038/nature01333
[2]

Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J. 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles 21:GB3018

doi: 10.1029/2006GB002888
[3]

Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, et al. 2014. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change 4:598−604

doi: 10.1038/nclimate2253
[4]

Ettinger AK, Chamberlain CJ, Morales-Castilla I, Buonaiuto DM, Flynn DFB, et al. 2020. Winter temperatures predominate in spring phenological responses to warming. Nature Climate Change 10:1137−42

doi: 10.1038/s41558-020-00917-3
[5]

Wang H, Wu C, Ciais P, Peñuelas J, Dai J, et al. 2020. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling. Nature Communications 11:4945

doi: 10.1038/s41467-020-18743-8
[6]

Beil I, Kreyling J, Meyer C, Lemcke N, Malyshev AV. 2021. Late to bed, late to rise—warmer autumn temperatures delay spring phenology by delaying dormancy. Global Change Biology 27:5806−17

doi: 10.1111/gcb.15858
[7]

Woo HR, Kim HJ, Lim PO, Nam HG. 2019. Leaf senescence: systems and dynamics aspects. Annual Review of Plant Biology 70:347−76

doi: 10.1146/annurev-arplant-050718-095859
[8]

Estiarte M, Peñuelas J. 2015. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology 21:1005−17

doi: 10.1111/gcb.12804
[9]

Way DA, Montgomery RA. 2015. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant, Cell & Environment 38:1725−36

doi: 10.1111/pce.12431
[10]

Lang W, Chen X, Qian S, Liu G, Piao S. 2019. A new process-based model for predicting autumn phenology: how is leaf senescence controlled by photoperiod and temperature coupling? Agricultural and Forest Meteorology 268:124−35

doi: 10.1016/j.agrformet.2019.01.006
[11]

Grossiord C, Bachofen C, Gisler J, Mas E, Vitasse Y, et al. 2022. Warming may extend tree growing seasons and compensate for reduced carbon uptake during dry periods. Journal of Ecology 110:1575−89

doi: 10.1111/1365-2745.13892
[12]

Kramer PJ. 1936. Effect of variation in length of day on growth and dormancy of trees. Plant Physiology 11:127−37

doi: 10.1104/pp.11.1.127
[13]

Heide OM. 1974. Growth and dormancy in Norway Spruce Ecotypes (Picea abies) I. interaction of photoperiod and temperature. Physiologia Plantarum 30:1−12

doi: 10.1111/j.1399-3054.1974.tb04983.x
[14]

Bauerle WL, Oren R, Way DA, Qian SS, Stoy PC, et al. 2012. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proceedings of the National Academy of Sciences of the United States of America 109:8612−17

doi: 10.1073/pnas.1119131109
[15]

Zani D, Crowther TW, Mo L, Renner SS, Zohner CM. 2020. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370:1066−71

doi: 10.1126/science.abd8911
[16]

Wang S, Wu Z, Gong Y, Nie Y, Liu Z, et al. 2023. Larger responses of trees' leaf senescence to cooling than warming: results from a climate manipulation experiment. Agricultural and Forest Meteorology 339:109568

doi: 10.1016/j.agrformet.2023.109568
[17]

Wang X, Wu C, Liu Y, Peñuelas J, Peng J. 2023. Earlier leaf senescence dates are constrained by soil moisture. Global Change Biology 29:1557−73

doi: 10.1111/gcb.16569
[18]

Wang P, Fu C, Wang L, Yan T. 2022. Delayed autumnal leaf senescence following nutrient fertilization results in altered nitrogen resorption. Tree Physiology 42:1549−59

doi: 10.1093/treephys/tpac028
[19]

Arend M, Gessler A, Schaub M. 2016. The influence of the soil on spring and autumn phenology in European beech. Tree Physiology 36:78−85

doi: 10.1093/treephys/tpv087
[20]

Ma P, Zhao J, Zhang H, Zhang L, Luo T. 2023. Increased precipitation leads to earlier green-up and later senescence in Tibetan alpine grassland regardless of warming. Science of The Total Environment 871:162000

doi: 10.1016/j.scitotenv.2023.162000
[21]

Delpierre N, Dufrêne E, Soudani K, Ulrich E, Cecchini S, et al. 2009. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology 149:938−48

doi: 10.1016/j.agrformet.2008.11.014
[22]

Peng J, Wu C, Zhang X, Wang X, Gonsamo A. 2019. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Global Change Biology 25:2174−88

doi: 10.1111/gcb.14627
[23]

Liu Q, Piao S, Campioli M, Gao M, Fu YH, et al. 2020. Modeling leaf senescence of deciduous tree species in Europe. Global Change Biology 26:4104−18

doi: 10.1111/gcb.15132
[24]

Meng L, Zhou Y, Gu L, Richardson AD, Peñuelas J, et al. 2021. Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming. Global Change Biology 27:2914−27

doi: 10.1111/gcb.15575
[25]

Heide OM, Prestrud AK. 2005. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology 25:109−14

doi: 10.1093/treephys/25.1.109
[26]

Wang H, Gao C, Ge Q. 2022. Low temperature and short daylength interact to affect the leaf senescence of two temperate tree species. Tree Physiology 42:2252−65

doi: 10.1093/treephys/tpac068
[27]

Liang L. 2019. A spatially explicit modeling analysis of adaptive variation in temperate tree phenology. Agricultural and Forest Meteorology 266−267:73−86

doi: 10.1016/j.agrformet.2018.12.004
[28]

Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, et al. 2018. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360:212−15

doi: 10.1126/science.aan8576
[29]

Hamilton JA, El Kayal W, Hart AT, Runcie DE, Arango-Velez A, et al. 2016. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Tree Physiology 36:1432−48

doi: 10.1093/treephys/tpw061
[30]

Koski V, Selkäinaho J. 1982. Experiments on the joint effect of heat sum and photoperiod on seedlings of Betula pendula. Helsinki: Finnish Forest Research Institute. pp. 1−34

[31]

Partanen J, Beuker E. 1999. Effects of photoperiod and thermal time on the growth rhythm of Pinus sylvestris seedlings. Scandinavian Journal of Forest Research 14:487−97

doi: 10.1080/02827589908540813
[32]

Viherä-Aarnio A, Häkkinen R, Partanen J, Luomajoki A, Koski V. 2005. Effects of seed origin and sowing time on timing of height growth cessation of Betula pendula seedlings. Tree Physiology 25:101−08

doi: 10.1093/treephys/25.1.101
[33]

Heide OM. 2003. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Tree Physiology 23:931−36

doi: 10.1093/treephys/23.13.931
[34]

Kalcsits LA, Silim S, Tanino KJT. 2009. Warm temperature accelerates short photoperiod-induced growth cessation and dormancy induction in hybrid poplar (Populus × spp.). Trees 23:971−79

doi: 10.1007/s00468-009-0339-7
[35]

Wang F, Zhang R, Lin J, Zheng J, Hänninen H, et al. 2022. High autumn temperatures increase the depth of bud dormancy in the subtropical Torreya grandis and Carya illinoinensis and delay leaf senescence in the deciduous Carya. Trees 36:1053−65

doi: 10.1007/s00468-022-02272-6
[36]

Bigler C, Vitasse Y. 2021. Premature leaf discoloration of European deciduous trees is caused by drought and heat in late spring and cold spells in early fall. Agricultural and Forest Meteorology 307:108492

doi: 10.1016/j.agrformet.2021.108492
[37]

Zhang R, Wang F, Zheng J, Lin J, Hänninen H, et al. 2021. Chilling accumulation and photoperiod regulate rest break and bud burst in five subtropical tree species. Forest Ecology and Management 485:118813

doi: 10.1016/j.foreco.2020.118813
[38]

Sønsteby A, Woznicki TL, Heide OM. 2020. A simple and convenient method for determination of entrance into dormancy in woody plants. Journal of Berry Research 10:559−71

doi: 10.3233/JBR-200534
[39]

Meier U. 2001. Growth Stages of Mono and Dicotyledonous Plants. Berlin: Federal Biological Research Centre for Agriculture and Forestry

[40]

Wang X, Xu H, Ma Q, Luo Y, He D, et al. 2023. Chilling and forcing proceed in parallel to regulate spring leaf unfolding in temperate trees. Global Ecology and Biogeography 32:1914−27

doi: 10.1111/geb.13740
[41]

R Core Team. 2023. R: A Language and environment for statistical computing. Vienna, Austria

[42]

Taylor JE, Whitelaw CA. 2001. Signals in abscission. New Phytologist 151:323−40

doi: 10.1046/j.0028-646x.2001.00194.x
[43]

Weiser CJ. 1970. Cold resistance and injury in woody plants: knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science 169:1269−78

doi: 10.1126/science.169.3952.1269
[44]

Keskitalo J, Bergquist G, Gardeström P, Jansson S. 2005. A cellular timetable of autumn senescence. Plant Physiology 139:1635−48

doi: 10.1104/pp.105.066845
[45]

Liu X, Zhou Y, Xiao J, Bao F. 2018. Effects of chilling on the structure, function and development of chloroplasts. Frontiers in Plant Science 9:1715

doi: 10.3389/fpls.2018.01715
[46]

Kane CN, McAdam SAM. 2023. Abscisic acid can augment, but is not essential for, autumnal leaf senescence. Journal of Experimental Botany 74:3255−66

doi: 10.1093/jxb/erad089
[47]

Wang J, Ding J. 2023. Molecular mechanisms of flowering phenology in trees. Forestry Research 3:2

doi: 10.48130/FR-2023-0002
[48]

Jewaria PK, Hänninen H, Li X, Bhalerao RP, Zhang R. 2021. A hundred years after: endodormancy and the chilling requirement in subtropical trees. New Phytologist 231:565−70

doi: 10.1111/nph.17382
[49]

McKown AD, Guy RD, Quamme LK. 2016. Impacts of bud set and lammas phenology on root: shoot biomass partitioning and carbon gain physiology in poplar. Trees 30:2131−41

doi: 10.1007/s00468-016-1439-9
[50]

Chen J, Hao Z, Guang X, Zhao C, Wang P, et al. 2019. Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation. Nature Plants 5:18−25

doi: 10.1038/s41477-018-0323-6
[51]

Zhou Z, Zheng S. 2003. The missing link in Ginkgo evolution. Nature 423:821−22

doi: 10.1038/423821a
[52]

Vitasse Y, Baumgarten F, Zohner CM, Kaewthongrach R, Fu YH, et al. 2021. Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. New Phytologist 232:537−50

doi: 10.1111/nph.17606
[53]

Massonnet C, Chuste PA, Levillain J, Gérémia F, Silva DE, et al. 2021. Leafy season length is reduced by a prolonged soil water deficit but not by repeated defoliation in beech trees (Fagus sylvatica L.): comparison of response among regional populations grown in a common garden. Agricultural and Forest Meteorology 297:108228

doi: 10.1016/j.agrformet.2020.108228
[54]

Zeng Z, Wu W, Peñuelas J, Li Y, Jiao W, et al. 2023. Increased risk of flash droughts with raised concurrent hot and dry extremes under global warming. NPJ Climate and Atmospheric Science 6:134

doi: 10.1038/s41612-023-00468-2
[55]

Wu C, Peng J, Ciais P, Peñuelas J, Wang H, et al. 2022. Increased drought effects on the phenology of autumn leaf senescence. Nature Climate Change 12:943−49

doi: 10.1038/s41558-022-01464-9
[56]

Malyshev AV. 2020. Warming events advance or delay spring phenology by affecting bud dormancy depth in trees. Frontiers in Plant Science 11:856

doi: 10.3389/fpls.2020.00856
[57]

Garrigues R, Dox I, Flores O, Marchand LJ, Malyshev AV, et al. 2023. Late autumn warming can both delay and advance spring budburst through contrasting effects on bud dormancy depth in Fagus sylvatica L. Tree Physiology 43:1718−30

doi: 10.1093/treephys/tpad080
[58]

Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR. 2010. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Molecular Biology 73:49−65

doi: 10.1007/s11103-010-9610-y
[59]

Grimberg Å, Lager I, Street NR, Robinson KM, Marttila S, et al. 2018. Storage lipid accumulation is controlled by photoperiodic signal acting via regulators of growth cessation and dormancy in hybrid aspen. New Phytologist 219:619−30

doi: 10.1111/nph.15197
[60]

Malyshev AV, Beil I, Zohner CM, Garrigues R, Campioli M. 2024. The clockwork of spring: bud dormancy timing as a driver of spring leaf-out in temperate deciduous trees. Agricultural and Forest Meteorology 349:109957

doi: 10.1016/j.agrformet.2024.109957