[1]

Syed F, Arif S, Ahmed I, Khalid N. 2021. Groundnut (peanut) (Arachis hypogaea). In Oilseeds: Health Attributes and Food Applications, eds Tanwar B, Goyal A. Singapore: Springer. pp. 93–122. doi: 10.1007/978-981-15-4194-0_4

[2]

Li H, Li C, Song X, Liu Y, Gao Q, et al. 2022. Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Scientific Reports 12(1):2758

doi: 10.1038/s41598-022-06789-1
[3]

Dean LL, Davis JP, Sanders TH. 2002. Groundnut (peanut) oil. Vegetable Oils in Food Technology: Composition, Properties, and Uses, second edition, ed. Gunstone FD. Oxford, UK: Blackwell Publishing Ltd. pp. 231−43. doi: 10.1002/9781444339925.ch8

[4]

Stephens AM, Dean LL, Davis JP, Osborne JA, Sanders TH. 2010. Peanuts, peanut oil, and fat free peanut flour reduced cardiovascular disease risk factors and the development of atherosclerosis in Syrian golden hamsters. Journal of Food Science 75(4):H116−H122

doi: 10.1111/j.1750-3841.2010.01569.x
[5]

Pesti GM, Bakalli RI, Driver JP, Sterling KG, et al. 2003. Comparison of peanut meal and soybean meal as protein supplements for laying hens. Poultry Science 82(8):1274−80

doi: 10.1093/ps/82.8.1274
[6]

Penfield S. 2017. Seed dormancy and germination. Current Biology 27(17):R874−R878

doi: 10.1016/j.cub.2017.05.050
[7]

Bomireddy D, Gangurde SS, Variath MT, Janila P, Manohar SS, et al. 2022. Discovery of major quantitative trait loci and candidate genes for fresh seed dormancy in groundnut. Agronomy 12(2):404

doi: 10.3390/agronomy12020404
[8]

Ntare BR, Diallo AT, Ndjeunga J, Waliyar F. 2008. Groundnut seed production manual. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). 20 pp.

[9]

Xu P, Tang G, Cui W, Chen G, Ma CL, et al. 2020. Transcriptional differences in peanut (Arachis hypogaea L.) seeds at the freshly harvested, after-ripening and newly germinated seed stages: insights into the regulatory networks of seed dormancy release and germination. PLoS One 15(1):e0219413

doi: 10.1371/journal.pone.0219413
[10]

Ketring DL, Morgan PW. 1971. Physiology of oil seeds: II. Dormancy release in Virginia-type peanut seeds by plant growth regulators. Plant Physiology 47(4):488−92

doi: 10.1104/pp.47.4.488
[11]

Wattanakulpakin P, Thongsri K, Sattayasamitsathit S. 2022. Ethephon effect on peanut seed dormancy release. Journal of Agricultural Science and Technology B 12:48−54

[12]

Ketring DL. 1975. Physiology of oil seeds. V. Germination of NC-13 Virginia-type peanut seeds in the presence of inhibitors and ethylene. Peanut Science 2(2):73−77

doi: 10.3146/i0095-3679-2-2-9
[13]

Miransari M, Smith DL. 2014. Plant hormones and seed germination. Environmental and Experimental Botany 99:110−21

doi: 10.1016/j.envexpbot.2013.11.005
[14]

Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, et al. 2017. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Frontiers in Plant Science 8:475

doi: 10.3389/fpls.2017.00475
[15]

Arshad M, Frankenberger WT Jr. 2012. Ethylene: agricultural sources and applications. New York, NY: Springer. xiii, 342 pp. doi: 10.1007/978-1-4615-0675-1

[16]

Ahammed GJ, Gantait S, Mitra M, Yang Y, Li X. 2020. Role of ethylene crosstalk in seed germination and early seedling development: a review. Plant Physiology and Biochemistry 151:124−31

doi: 10.1016/j.plaphy.2020.03.016
[17]

Linkies A, Müller K, Morris K, Turecková V, Wenk M, et al. 2009. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. The Plant Cell 21(12):3803−22

doi: 10.1105/tpc.109.070201
[18]

Yang R, Zhang H, Wang Q, Guo Y. 2012. Regulatory mechanism of plant hormones on seed dormancy and germination. Acta Agrestia Sinica 20(1):1−9

doi: 10.3969/j.issn.1007-0435.2012.01.001
[19]

Soxhlet FV. 1879. Die gewichtsanalytische bestimmung des milchfettes. Polytechnisches Journal 232(5):461−65

[20]

Rao X, Huang X, Zhou Z, Lin X. 2013. An improvement of the 2−ΔΔCᴛ method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, Bioinformatics and Biomathematics 3(3):71−85

[21]

Shu K, Liu X, Xie Q, He Z. 2016. Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant 9(1):34−45

doi: 10.1016/j.molp.2015.08.010
[22]

Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A. 2013. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Frontiers in Plant Science 4:63

doi: 10.3389/fpls.2013.00063
[23]

Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H. 2014. Ethylene, a key factor in the regulation of seed dormancy. Frontiers in Plant Science 5:539

doi: 10.3389/fpls.2014.00539
[24]

Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. 2016. A developmental transcriptome map for allotetraploid Arachis hypogaea. Frontiers in Plant Science 7:1446

doi: 10.3389/fpls.2016.01446
[25]

Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, et al. 2006. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. The Plant Journal 48(3):354−66

doi: 10.1111/j.1365-313X.2006.02881.x
[26]

Ali F, Qanmber G, Li F, Wang Z. 2022. Updated role of ABA in seed maturation, dormancy, and germination. Journal of Advanced Research 35:199−214

doi: 10.1016/j.jare.2021.03.011
[27]

Zhao H, Zhang Y, Zheng Y. 2022. Integration of ABA, GA, and light signaling in seed germination through the regulation of ABI5. Frontiers in Plant Science 13:1000803

doi: 10.3389/fpls.2022.1000803
[28]

Pattyn J, Vaughan-Hirsch J, Van de Poel B. 2021. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. New Phytologist 229(2):770−82

doi: 10.1111/nph.16873
[29]

Cui Y, Bian J, Guan Y, Xu F, Han X, et al. 2022. Genome-wide analysis and expression profiles of ethylene signal genes and Apetala2/ethylene-responsive factors in peanut (Arachis hypogaea L.). Frontiers in Plant Science 13:828482

doi: 10.3389/fpls.2022.828482
[30]

Akhtar S, Khalid N, Ahmed I, Shahzad A, Suleria HAR. 2014. Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: a review. Critical Reviews in Food Science and Nutrition 54(12):1562−75

doi: 10.1080/10408398.2011.644353
[31]

Negoita M, Mihai AL, Adascalului A, Iorga E, Belc N. 2018. Comparison of the fatty acid composition of peanut butter by applying different fat extraction procedures. Revista de Chimie 69(11):3023−32

doi: 10.37358/RC.18.11.6675
[32]

Cherif AO, Pepe C, Messaouda MB. 2023. Fatty acids profile of wild and cultivar Tunisian peanut oilseeds (Arachis hypogaea L.) at different developmental stages. Journal of Oleo Science 72(4):379−87

doi: 10.5650/jos.ess22400
[33]

Goepfert S, Poirier Y. 2007. β-oxidation in fatty acid degradation and beyond. Current Opinion in Plant Biology 10(3):245−51

doi: 10.1016/j.pbi.2007.04.007
[34]

Li S, Zeng J, Zheng Z, Zhou Q, Chen S, et al. 2022. Comparative transcriptome analysis reveals the mechanisms underlying differential seed vigor in two contrasting peanut genotypes. Agriculture 12(9):1355

doi: 10.3390/agriculture12091355
[35]

Sun M, Tuan PA, Izydorczyk MS, Ayele BT. 2020. Ethylene regulates post-germination seedling growth in wheat through spatial and temporal modulation of ABA/GA balance. Journal of Experimental Botany 71(6):1985−2004

doi: 10.1093/jxb/erz566
[36]

Hajiabbasi M, Afshari RT, Abbasi A. 2015. Effects of salicylic acid and ethylene on germination improvement of deteriorated seed of Glycine max (L.). Crop Research 50:86−94

[37]

El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, et al. 2015. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant, Cell & Environment 38(2):364−74

doi: 10.1111/pce.12371
[38]

Kucera B, Cohn MA, Leubner-Metzger G. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15(4):281−307

doi: 10.1079/SSR2005218
[39]

Chen K, Bradshaw S. 2009. Ethylene and seed germination. Biologia Plantarum 53(3):433−39

[40]

Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology 59:225−51

doi: 10.1146/annurev.arplant.59.032607.092804
[41]

Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56:165−85

doi: 10.1146/annurev.arplant.56.032604.144046
[42]

Hedden P, Thomas SG. 2012. Gibberellin biosynthesis and its regulation. Biochemical Journal 444(1):11−25

doi: 10.1042/BJ20120245
[43]

Ketring DL, Morgan PW. 1969. Ethylene as a component of the emanations from germinating peanut seeds and its effect on dormant Virginia-type seeds. Plant Physiology 44(3):326−30

doi: 10.1104/pp.44.3.326
[44]

Petruzzelli L, Coraggio I, Leubner-Metzger G. 2000. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclopropane-1-carboxylic acid oxidase. Planta 211(1):144−49

doi: 10.1007/s004250000274
[45]

Petruzzelli L, Harren F, Reuss J. 1994. Patterns of C2H4 production during germination and seedling growth of pea and wheat as indicated by a laser-driven photoacoustic system. Environmental and Experimental Botany 34(1):55−61

doi: 10.1016/0098-8472(94)90009-4
[46]

Fu JR, Yang SF. 1983. Release of heat pretreatment-induced dormancy in lettuce seeds by ethylene or cytokinin in relation to the production of ethylene and the synthesis of 1-aminocyclopropane-1-carboxylic acid during germination. Journal of Plant Growth Regulation 2:185−92

doi: 10.1007/BF02042247
[47]

Gómez-Jiménez MDC, García-Olivares E, Matilla AJ. 2001. 1-Aminocyclopropane-1-carboxylate oxidase from embryonic axes of germinating chick-pea (Cicer arietinum L.) seeds: cellular immunolocalization and alterations in its expression by indole-3-acetic acid, abscisic acid and spermine. Seed Science Research 11(3):243−53

[48]

Li W, Nishiyama R, Watanabe Y, Van Ha C, Kojima M, et al. 2018. Effects of overproduced ethylene on the contents of other phytohormones and expression of their key biosynthetic genes. Plant Physiology and Biochemistry 128:170−77

doi: 10.1016/j.plaphy.2018.05.013
[49]

Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, et al. 2007. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. Journal of Experimental Botany 58(11):3047−60

doi: 10.1093/jxb/erm162
[50]

Müller M. 2021. Foes or friends: ABA and ethylene interaction under abiotic stress. Plants 10(3):448

doi: 10.3390/plants10030448
[51]

Gazzarrini S, McCourt P. 2003. Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us. Annals of Botany 91(6):605−12

doi: 10.1093/aob/mcg064
[52]

Feng CZ, Chen Y, Wang C, Kong YH, Wu WH, et al. 2014. Arabidopsis RAV 1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. The Plant Journal 80(4):654−68

doi: 10.1111/tpj.12670