| [1] |
Lieberman M, Kunishi AT, Mapson LW, Wardale DA. 1965. Ethylene production from methionine. Biochemical Journaly 97:449−59 doi: 10.1042/bj0970449 |
| [2] |
Lieberman M, Kunishi A. 1966. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiology 41:376−82 doi: 10.1104/pp.41.3.376 |
| [3] |
Yang SF, Ku HS, Pratt HK. 1966. Ethylene production from methionine as mediated by flavin mononucleotide and light. Biochemical and Biophysical Research Communications 24:739−43 doi: 10.1016/0006-291X(66)90387-1 |
| [4] |
Baur AH, Yang SF. 1972. Methionine metabolism in apple tissue in relation to ethylene biosynthesis. Phytochemistry 11:3207−14 doi: 10.1016/S0031-9422(00)86375-X |
| [5] |
Burg SP, Clagett CO. 1967. Conversion of methionine to ethylene in vegetative tissue and fruits. Biochemical and Biophysical Research Communications 27:125−30 doi: 10.1016/S0006-291X(67)80050-0 |
| [6] |
Pommerrenig B, Feussner K, Zierer W, Rabinovych V, Klebl F, et al. 2011. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. The Plant Cell 23:1904−19 doi: 10.1105/tpc.110.079657 |
| [7] |
Génard M, Gouble B. 2005. ETHY: a theory of fruit climacteric ethylene emission. Plant Physiology 139:531−45 doi: 10.1104/pp.105.063339 |
| [8] |
Sekowska A, Ashida H, Danchin A. 2019. Revisiting the methionine salvage pathway and its paralogues. Microbial Biotechnology 12:77−97 doi: 10.1111/1751-7915.13324 |
| [9] |
Williams-Ashman HG, Seidenfeld J, Galletti P. 1982. Trends in the biochemical pharmacology of 5'-deoxy-5'-methylthioadenosine. Biochemical Pharmacology 31:277−88 doi: 10.1016/0006-2952(82)90171-X |
| [10] |
Subhi AL, Diegelman P, Porter CW, Tang B, Lu ZJ, et al. 2003. Methylthioadenosine phosphorylase regulates ornithine decarboxylase by production of downstream metabolites. Journal of Biological Chemistry 278:49868−73 doi: 10.1074/jbc.M308451200 |
| [11] |
Hildebrandt TM, Nunes Nesi A, Araújo WL, Braun HP. 2015. Amino acid catabolism in plants. Molecular Plant 8:1563−79 doi: 10.1016/j.molp.2015.09.005 |
| [12] |
Ravanel S, Gakière B, Job D, Douce R. 1998. The specific features of methionine biosynthesis and metabolism in plants. Proceedings of the National Academy of Sciences of the United States of America 95:7805−12 doi: 10.1073/pnas.95.13.7805 |
| [13] |
Clifton MC, Abendroth J, Edwards TE, Leibly DJ, Gillespie AK, et al. 2011. Structure of the cystathionine γ-synthase MetB from Mycobacterium ulcerans. Acta Crystallographica Section F: Structural Biology and Crystallization Communications 67:1154−58 doi: 10.1107/S1744309111029575 |
| [14] |
Hesse H, Hoefgen R. 2003. Molecular aspects of methionine biosynthesis. Trends in Plant Science 8:259−62 doi: 10.1016/S1360-1385(03)00107-9 |
| [15] |
Frankard V, Ispas G, Hesse H, Jacobs M, Höfgen R. 2002. A defect in cystathionine β-lyase activity causes the severe phenotype of a Nicotiana plumbaginifolia methionine auxotroph. Plant Science 162:607−14 doi: 10.1016/S0168-9452(01)00603-3 |
| [16] |
Inaba K, Fujiwara T, Hayashi H, Chino M, Komeda Y, et al. 1994. Isolation of an Arabidopsis-thaliana mutant, mto1, that overaccumulates soluble methionine-temporal and spatial patterns of soluble methionine accumulation. Plant Physiology 104:881−87 doi: 10.1104/pp.104.3.881 |
| [17] |
Bartlem D, Lambein I, Okamoto T, Itaya A, Uda Y, et al. 2000. Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. Plant Physiology 123:101−10 doi: 10.1104/pp.123.1.101 |
| [18] |
Hacham Y, Avraham T, Amir R. 2002. The N-terminal region of Arabidopsis cystathionine gamma-synthase plays an important regulatory role in methionine metabolism. Plant Physiology 128:454−62 doi: 10.1104/pp.010819 |
| [19] |
Amir R. 2010. Current understanding of the factors regulating methionine content in vegetative tissues of higher plants. Amino Acids 39:917−31 doi: 10.1007/s00726-010-0482-x |
| [20] |
Rébeillé F, Jabrin S, Bligny R, Loizeau K, Gambonnet B, et al. 2006. Methionine catabolism in Arabidopsis cells is initiated by a γ-cleavage process and leads to S-methylcysteine and isoleucine syntheses. Proceedings of the National Academy of Sciences of the United States of America 103:15687−92 doi: 10.1073/pnas.0606195103 |
| [21] |
Goyer A, Collakova E, Shachar-Hill Y, Hanson AD. 2007. Functional characterization of a methionine γ-lyase in Arabidopsis and its implication in an alternative to the reverse trans-sulfuration pathway. Plant and Cell Physiology 48:232−42 doi: 10.1093/pcp/pcl055 |
| [22] |
Hacham Y, Shitrit O, Nisimi O, Friebach M, Amir R. 2023. Elucidating the importance of the catabolic enzyme, methionine-gamma-lyase, in stresses during Arabidopsis seed development and germination. Frontiers in Plant Science 14:1143021 doi: 10.3389/fpls.2023.1143021 |
| [23] |
Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, et al. 1999. S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. The Plant Cell 11:1485−97 doi: 10.1105/tpc.11.8.1485 |
| [24] |
Ranocha P, McNeil SD, Ziemak MJ, Li CJ, Tarczynski MC, et al. 2001. The S-methylmethionine cycle in angiosperms: ubiquity, antiquity and activity. The Plant Journal 25:575−84 doi: 10.1046/j.1365-313x.2001.00988.x |
| [25] |
Kocsis MG, Ranocha P, Gage DA, Simon ES, Rhodes D, et al. 2003. Insertional inactivation of the methionine S-methyltransferase gene eliminates the S-methylmethionine cycle and increases the methylation ratio. Plant Physiology 131:1808−15 doi: 10.1104/pp.102.018846 |
| [26] |
Ogawa S, Mitsuya S. 2012. S-methylmethionine is involved in the salinity tolerance of Arabidopsis thaliana plants at germination and early growth stages. Physiologia Plantarum 144:13−9 doi: 10.1111/j.1399-3054.2011.01516.x |
| [27] |
Teshima T, Yamada N, Yokota Y, Sayama T, Inagaki K, et al. 2020. Suppressed Methionine γ-Lyase expression causes hyperaccumulation of S-Methylmethionine in soybean seeds. Plant Physiology 183:943−56 doi: 10.1104/pp.20.00254 |
| [28] |
Van de Poel B, Bulens I, Markoula A, Hertog MLATM, Dreesen R, et al. 2012. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. Plant Physiology 160:1498−514 doi: 10.1104/pp.112.206086 |
| [29] |
Katz YS, Galili G, Amir R. 2006. Regulatory role of cystathionine-γ-synthase and de novo synthesis of methionine in ethylene production during tomato fruit ripening. Plant Molecular Biology 61:255−68 doi: 10.1007/s11103-006-0009-8 |
| [30] |
Giovanelli J, Mudd SH, Datko AH. 1985. In vivo regulation of de novo methionine biosynthesis in a higher plant (lemna). Plant Physiology 77:450−55 doi: 10.1104/pp.77.2.450 |
| [31] |
Roje S. 2006. S-adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry 67:1686−98 doi: 10.1016/j.phytochem.2006.04.019 |
| [32] |
Fontecave M, Atta M, Mulliez E. 2004. S-adenosylmethionine: nothing goes to waste. Trends in Biochemical Sciences 29:243−49 doi: 10.1016/j.tibs.2004.03.007 |
| [33] |
Lee YH, Ren D, Jeon B, Liu HW. 2023. S-adenosylmethionine: more than just a methyl donor. Natural Product Reports 40:1521−49 doi: 10.1039/D2NP00086E |
| [34] |
Chiba Y, Sakurai R, Yoshino M, Ominato K, Ishikawa M, et al. 2003. S-adenosyl-L-methionine is an effector in the posttranscriptional autoregulation of the cystathionine γ-synthase gene in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 100:10225−30 doi: 10.1073/pnas.1831512100 |
| [35] |
Temple H, Phyo P, Yang W, Lyczakowski JJ, Echevarría-Poza A, et al. 2022. Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. Nature Plants 8:656−69 doi: 10.1038/s41477-022-01156-4 |
| [36] |
Watanabe M, Chiba Y, Hirai MY. 2021. Metabolism and regulatory functions of O-acetylserine, S-adenosylmethionine, homocysteine, and serine in plant development and environmental responses. Frontiers in Plant Science 12:643403 doi: 10.3389/fpls.2021.643403 |
| [37] |
Ming Y, Jiang L, Ji D. 2023. Epigenetic regulation in tomato fruit ripening. Frontiers in Plant Science 14:1269090 doi: 10.3389/fpls.2023.1269090 |
| [38] |
Chen S, Han J, Wu S, Guo S, Tang Y, et al. 2024. From non-coding RNAs to histone modification: The epigenetic mechanisms in tomato fruit ripening and quality regulation. Plant Physiology and Biochemistry 215:109070 doi: 10.1016/j.plaphy.2024.109070 |
| [39] |
Huang F, He Y. 2024. Epigenetic control of gene expression by cellular metabolisms in plants. Current Opinion in Plant Biology 81:102572 doi: 10.1016/j.pbi.2024.102572 |
| [40] |
Van de Poel B, Bulens I, Oppermann Y, Hertog MLATM, Nicolai BM, et al. 2013. S-adenosyl-ʟ-methionine usage during climacteric ripening of tomato in relation to ethylene and polyamine biosynthesis and transmethylation capacity. Physiologia Plantarum 148:176−88 doi: 10.1111/j.1399-3054.2012.01703.x |
| [41] |
Li DD, Mou WS, Van de Poel B, Chang CR. 2022. Something old, something new: Conservation of the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid as a signaling molecule. Current Opinion in Plant Biology 65:102116 doi: 10.1016/j.pbi.2021.102116 |
| [42] |
Bürstenbinder K, Waduwara I, Schoor S, Moffatt BA, Wirtz M, et al. 2010. Inhibition of 5'-methylthioadenosine metabolism in the Yang cycle alters polyamine levels, and impairs seedling growth and reproduction in Arabidopsis. The Plant Journal 62:977−88 doi: 10.1111/j.1365-313X.2010.04211.x |
| [43] |
Waduwara-Jayabahu I, Oppermann Y, Wirtz M, Hull ZT, Schoor S, et al. 2012. Recycling of methylthioadenosine is essential for normal vascular development and reproduction in Arabidopsis. Plant Physiology 158:1728−44 doi: 10.1104/pp.111.191072 |
| [44] |
Li Y, Wang Y, Wu P. 2019. 5'-methylthioadenosine and cancer: old molecules, new understanding. Journal of Cancer 10:927−36 doi: 10.7150/jca.27160 |
| [45] |
Bertino JR, Waud WR, Parker WB, Lubin M. 2011. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity Current strategies. Cancer Biology & Therapy 11:627−32 doi: 10.4161/cbt.11.7.14948 |
| [46] |
Adeel SA. 2021. Deciphering the toxicity effects of 5'-Methylthioadenosine accumulation in Arabidopsis thaliana. Thesis. The University of Waterloo, Canada |
| [47] |
Rabeh K, Oubohssaine M, Hnini M. 2024. TOR in plants: Multidimensional regulators of plant growth and signaling pathways. Journal of Plant Physiology 294:154186 doi: 10.1016/j.jplph.2024.154186 |
| [48] |
Kushad MM, Richardson DG, Ferro AJ. 1985. 5'-methylthioadenosine nucleosidase and 5-methylthioribose kinase activities and ethylene production during tomato fruit development and ripening. Plant Physiology 79:525−29 doi: 10.1104/pp.79.2.525 |
| [49] |
Hossain GS, Li J, Shin HD, Du G, Wang M, et al. 2014. One-step biosynthesis of α-keto-γ-methylthiobutyric acid from L-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered L-amino acid deaminase from Proteus vulgaris. Plos One 9:e114291 doi: 10.1371/journal.pone.0114291 |
| [50] |
Ince JE, Knowles CJ. 1986. Ethylene formation by cell-free-extracts of Escherichia-coli. Archives of Microbiology 146:151−58 doi: 10.1007/BF00402343 |
| [51] |
Fukuda H, Takahashi M, Fujii T, Tazaki M, Ogawa T. 1989. An NADH: Fe(III)EDTA oxidoreductase from Cryptococcus albidus: an enzyme involved in ethylene production in vivo? FEMS Microbiology Letters 60:107−11 doi: 10.1111/j.1574-6968.1989.tb03428.x |
| [52] |
Chagué V, Elad Y, Barakat R, Tudzynski P, Sharon A. 2002. Ethylene biosynthesis in Botrytis cinerea. FEMS Microbiology Ecology 40:143−49 doi: 10.1111/j.1574-6941.2002.tb00946.x |
| [53] |
Cristescu SM, De Martinis D, Te Lintel Hekkert S, Parker DH, Harren FJM. 2002. Ethylene production by Botrytis cinerea in vitro and in tomatoes. Applied and Environmental Microbiology 68:5342−50 doi: 10.1128/AEM.68.11.5342-5350.2002 |
| [54] |
Yang SF. 1969. Further studies on ethylene formation from α-keto-γ-methylthiobutyric acid or β-methylthiopropionaldehyde by peroxidase in the presence of sulfite and oxygen. Journal of Biological Chemistry 244:4360−65 doi: 10.1016/S0021-9258(18)94326-7 |
| [55] |
Kushad MM, Richardson DG, Ferro AJ. 1983. Intermediates in the recycling of 5-methylthioribose to methionine in fruits. Plant Physiology 73:257−61 doi: 10.1104/pp.73.2.257 |
| [56] |
Yang SF. 1974. The biochemistry of ethylene: biogenesis and metabolism. Recent Advances in Phytochemistry 7:131−64 doi: 10.1016/B978-0-12-612407-1.50012-8 |
| [57] |
Wang SY, Adams DO, Lieberman M. 1982. Recycling of 5'-methylthioadenosine-ribose carbon-atoms into methionine in tomato tissue in relation to ethylene production. Plant Physiology 70:117−21 doi: 10.1104/pp.70.1.117 |
| [58] |
Nakano T, Ohki I, Yokota A, Ashida H. 2013. MtnBD is a multifunctional fusion enzyme in the methionine salvage pathway of Tetrahymena thermophila. Plos One 8:e67385 doi: 10.1371/journal.pone.0067385 |
| [59] |
Pons S, Fournier S, Chervin C, Bécard G, Rochange S, et al. 2020. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Plos One 15:e0240886 doi: 10.1371/journal.pone.0240886 |
| [60] |
Shen B, Li C, Tarczynski MC. 2002. High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. The Plant Journal 29:371−80 doi: 10.1046/j.1365-313X.2002.01221.x |
| [61] |
Goto DB, Ogi M, Kijima F, Kumagai T, van Werven F, et al. 2002. A single-nucleotide mutation in a gene encoding S-adenosylmethionine synthetase is associated with methionine over-accumulation phenotype in Arabidopsis thaliana. Genes & Genetic Systems 77:89−95 doi: 10.1266/ggs.77.89 |
| [62] |
Kim J, Lee M, Chalam R, Martin MN, Leustek T, et al. 2002. Constitutive overexpression of cystathionine γ-synthase in Arabidopsis leads to accumulation of soluble methionine and S-methylmethionine. Plant Physiology 128:95−107 doi: 10.1104/pp.101801 |
| [63] |
Boerjan W, Bauw G, Van Montagu M, Inzé D. 1994. Distinct phenotypes generated by overexpression and suppression of S-adenosyl-L-methionine synthetase reveal developmental patterns of gene silencing in tobacco. The Plant Cell 6:1401−14 doi: 10.1105/tpc.6.10.1401 |
| [64] |
Li W, Han Y, Tao F, Chong K. 2011. Knockdown of SAMS genes encoding S-adenosyl-ʟ-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. Journal of Plant Physiology 168:1837−43 doi: 10.1016/j.jplph.2011.05.020 |
| [65] |
Hu W, Hu S, Li S, Zhou Q, Xie Z, et al. 2023. AtSAMS regulates floral organ development by DNA methylation and ethylene signaling pathway. Plant Science 334:111767 doi: 10.1016/j.plantsci.2023.111767 |
| [66] |
Chen Y, Zou T, McCormick S. 2016. S-adenosylmethionine synthetase 3 is important for pollen tube growth. Plant Physiology 172:244−53 doi: 10.1104/pp.16.00774 |
| [67] |
Tao Y, Wang J, Miao J, Chen J, Wu S, et al. 2018. The spermine synthase OsSPMS1 regulates seed germination, grain Size, and yield. Plant Physiology 178:1522−36 doi: 10.1104/pp.18.00877 |
| [68] |
Seong ES, Jeon MR, Choi JH, Yoo JH, Lee JG, et al. 2020. Overexpression of S-adenosylmethionine synthetase enhances tolerance to cold stress in tobacco. Russian Journal of Plant Physiology 67:242−49 doi: 10.1134/S1021443720020144 |
| [69] |
Zhang X, Bao Z, Gong B, Shi Q. 2020. S-adenosylmethionine synthetase 1 confers drought and salt tolerance in transgenic tomato. Environmental and Experimental Botany 179:104226 doi: 10.1016/j.envexpbot.2020.104226 |
| [70] |
Yin M, Huang Z, Aslam A, Wang Z, Wang J, et al. 2024. Genome-wide identification of SAMS gene family in Cucurbitaceae and the role of ClSAMS1 in watermelon tolerance to abiotic stress. Plant Physiology and Biochemistry 211:108708 doi: 10.1016/j.plaphy.2024.108708 |
| [71] |
Zhang C, Li H, Yin J, Han Z, Liu X, et al. 2024. Pan-genome wide identification and analysis of the SAMS gene family in sunflowers (Helianthus annuus L. ) revealed their intraspecies diversity and potential roles in abiotic stress tolerance. Frontiers in Plant Science 15:1499024 doi: 10.3389/fpls.2024.1499024 |
| [72] |
Lin W, Wang Y, Liu X, Shang JX, Zhao L. 2021. OsWAK112, A wall-associated kinase, negatively regulates salt stress responses by inhibiting ethylene production. Frontiers in Plant Science 12:751965 doi: 10.3389/fpls.2021.751965 |
| [73] |
Tian J, Zhang F, Zhang G, Li X, Wen C, et al. 2024. A long noncoding RNA functions in pumpkin fruit development through S-adenosyl-ʟ-methionine synthetase. Plant Physiology 195:940−57 doi: 10.1093/plphys/kiae099 |
| [74] |
Jin Y, Ye N, Zhu F, Li H, Wang J, et al. 2017. Calcium-dependent protein kinase CPK28 targets the methionine adenosyltransferases for degradation by the 26S proteasome and affects ethylene biosynthesis and lignin deposition in Arabidopsis. The Plant Journal 90:304−18 doi: 10.1111/tpj.13493 |
| [75] |
Zhu H, He M, Jahan MS, Wu J, Gu Q, et al. 2021. CsCDPK6, a CsSAMS1-interacting protein, affects polyamine/ethylene biosynthesis in cucumber and enhances salt tolerance by overexpression in tobacco. International Journal of Molecular Sciences 22:11133 doi: 10.3390/ijms222011133 |
| [76] |
Hu W, Wang R, Hao X, Li S, Zhao X, et al. 2024. OsLCD3 interacts with OsSAMS1 to regulate grain size via ethylene/polyamine homeostasis control. The Plant Journal 119:705−19 doi: 10.1111/tpj.16788 |
| [77] |
Chen Y, Xu Y, Luo W, Li W, Chen N, et al. 2013. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Plant Physiology 163:1673−85 doi: 10.1104/pp.113.224527 |
| [78] |
Heidari P, Mazloomi F, Nussbaumer T, Barcaccia G. 2020. Insights into the SAM synthetase gene family and its roles in tomato seedlings under abiotic stresses and hormone treatments. Plants 9(5):586 doi: 10.3390/plants9050586 |
| [79] |
Ji D, Cui X, Qin G, Chen T, Tian S. 2020. SlFERL interacts with S-adenosylmethionine synthetase to regulate fruit ripening. Plant Physiology 184:2168−81 doi: 10.1104/pp.20.01203 |
| [80] |
Pattyn J, Vaughan-Hirsch J, van de Poel B. 2021. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. New Phytologist 229:770−82 doi: 10.1111/nph.16873 |
| [81] |
Tsuchisaka A, Theologis A. 2004. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiology 136:2982−3000 doi: 10.1104/pp.104.049999 |
| [82] |
Sato T, Theologis A. 1989. Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proceedings of the National Academy of Sciences of the United States of America 86:6621−25 doi: 10.1073/pnas.86.17.6621 |
| [83] |
Huai Q, Xia Y, Chen Y, Callahan B, Li N, et al. 2001. Crystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5'-phosphate provide new insight into catalytic mechanisms. Journal of Biological Chemistry 276:38210−16 doi: 10.1074/jbc.M103840200 |
| [84] |
Xu C, Hao B, Sun G, Mei Y, Sun L, et al. 2021. Dual activities of ACC synthase: Novel clues regarding the molecular evolution of ACS genes. Science Advances 7(46):eabg8752 doi: 10.1126/sciadv.abg8752 |
| [85] |
Adams DO, Yang SF. 1977. Methionine metabolism in apple tissue: implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiology 60:892−96 doi: 10.1104/pp.60.6.892 |
| [86] |
Guranowski AB, Chiang PK, Cantoni GL. 1981. 5'-Methylthioadenosine nucleosidase: purification and characterization of the enzyme from Lupinus-Luteus seeds. European Journal of Biochemistry 114:293−99 doi: 10.1111/j.1432-1033.1981.tb05148.x |
| [87] |
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, et al. 2007. An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718 doi: 10.1371/journal.pone.0000718 |
| [88] |
Park EY, Oh SI, Nam MJ, Shin JS, Kim KN, et al. 2006. Crystal structure of 5'-methylthioadenosine nucleosidase from Arabidopsis thaliana at 1.5-Å resolution. Proteins 65:519−23 doi: 10.1002/prot.21120 |
| [89] |
Park EY, Choi WS, Oh SI, Kim KN, Shin JS, et al. 2009. Biochemical and structural characterization of 5'-methylthioadenosine nucleosidases from Arabidopsis thaliana. Biochemical and Biophysical Research Communications 381:619−24 doi: 10.1016/j.bbrc.2009.02.106 |
| [90] |
Rzewuski G, Cornell KA, Rooney L, Bürstenbinder K, Wirtz M, et al. 2007. OsMTN encodes a 5'-methylthioadenosine nucleosidase that is up-regulated during submergence-induced ethylene synthesis in rice (Oryza sativa L.). Journal of Experimental Botany 58:1505−14 doi: 10.1093/jxb/erm014 |
| [91] |
Sun W, Zhou XJ, Chen C, Zhang X, Tian X, et al. 2022. Maize Interveinal Chlorosis 1 links the Yang cycle and Fe homeostasis through nicotianamine biosynthesis. Plant Physiology 188:2131−45 doi: 10.1093/plphys/kiac009 |
| [92] |
Kushad MM, Richardson DG, Ferro AJ. 1982. 5-methylthioribose kinase activity in plants. Biochemical and Biophysical Research Communications 108:167−73 doi: 10.1016/0006-291X(82)91846-0 |
| [93] |
Guranowski A. 1983. Plant 5-methylthioribose kinase: properties of the partially purified enzyme from yellow lupin (lupinus luteus L.) seeds. Plant Physiology 71:932−35 doi: 10.1104/pp.71.4.932 |
| [94] |
Sauter M, Cornell KA, Beszteri S, Rzewuski G. 2004. Functional analysis of methylthioribose kinase genes in plants. Plant Physiology 136:4061−71 doi: 10.1104/pp.104.053587 |
| [95] |
Bürstenbinder K, Rzewuski G, Wirtz M, Hell R, Sauter M. 2007. The role of methionine recycling for ethylene synthesis in Arabidopsis. The Plant Journal 49:238−49 doi: 10.1111/j.1365-313X.2006.02942.x |
| [96] |
Kushad MM, Orvos A, Ferro AJ. 1992. 5'-Methylthioadenosine nucleosidase and 5-methylthioribose kinase-activities in relation to stress-induced ethylene biosynthesis. Physiologia Plantarum 86:532−38 doi: 10.1111/j.1399-3054.1992.tb02166.x |
| [97] |
Sekowska A, Dénervaud V, Ashida H, Michoud K, Haas D, et al. 2004. Bacterial variations on the methionine salvage pathway. BMC Microbiology 4:9 doi: 10.1186/1471-2180-4-9 |
| [98] |
Pirkov I, Norbeck J, Gustafsson L, Albers E. 2008. A complete inventory of all enzymes in the eukaryotic methionine salvage pathway. The FEBS Journal 275:4111−20 doi: 10.1111/j.1742-4658.2008.06552.x |
| [99] |
Zierer W, Hajirezaei MR, Eggert K, Sauer N, von Wirén N, et al. 2016. Phloem-specific methionine recycling fuels polyamine biosynthesis in a sulfur-dependent manner and promotes flower and seed development. Plant Physiology 170:790−806 doi: 10.1104/pp.15.00786 |
| [100] |
Wang JH, Gu KD, Duan X, Wang CK, Zhang QY, et al. 2019. The apple yang cycle’s gene MdDEP1 enhances salt and drought tolerance, as well as triggers early-flowering in Arabidopsis. Scientia Horticulturae 248:154−62 doi: 10.1016/j.scienta.2018.12.012 |
| [101] |
Hu DG, Sun CH, Zhang QY, Gu KD, Hao YJ. 2020. The basic helix-loop-helix transcription factor MdbHLH3 modulates leaf senescence in apple via the regulation of dehydratase-enolase-phosphatase complex 1. Horticulture Research 7:50 doi: 10.1038/s41438-020-0273-9 |
| [102] |
Wang CK, Li XM, Dong F, Sun CH, Lu WL, et al. 2022. Yang cycle enzyme DEP1: its moonlighting functions in PSI and ROS production during leaf senescence. Molecular Horticulture 2(1):10 doi: 10.1186/s43897-022-00031-2 |
| [103] |
Dai Y, Wensink PC, Abeles RH. 1999. One protein, two enzymes. Journal of Biological Chemistry 274:1193−95 doi: 10.1074/jbc.274.3.1193 |
| [104] |
Wray JW, Abeles RH. 1995. The methionine salvage pathway in Klebsiella pneumoniae and rat liver: Identification and characterization of two novel dioxygenases. Journal of Biological Chemistry 270:3147−53 doi: 10.1074/jbc.270.7.3147 |
| [105] |
Deshpande AR, Wagenpfeil K, Pochapsky TC, Petsko GA, Ringe D. 2016. Metal-dependent function of a mammalian acireductone dioxygenase. Biochemistry 55:1398−407 doi: 10.1021/acs.biochem.5b01319 |
| [106] |
Deshpande AR, Pochapsky TC, Petsko GA, Ringe D. 2017. Dual chemistry catalyzed by human acireductone dioxygenase. Protein Engineering, Design and Selection 30:197−204 doi: 10.1093/protein/gzw078 |
| [107] |
Sauter M, Lorbiecke R, Ouyang B, Pochapsky TC, Rzewuski G. 2005. The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. The Plant Journal 44:718−29 doi: 10.1111/j.1365-313X.2005.02564.x |
| [108] |
Deshpande AR, Pochapsky TC, Ringe D. 2017. The metal drives the chemistry: Dual functions of acireductone dioxygenase. Chemical Reviews 117:10474−501 doi: 10.1021/acs.chemrev.7b00117 |
| [109] |
Kim JH, Kim HS, Lee YH, Kim YS, Oh HW, et al. 2008. Polyamine biosynthesis regulated by StARD expression plays an important role in potato wound periderm formation. Plant and Cell Physiology 49:1627−32 doi: 10.1093/pcp/pcn115 |
| [110] |
Liang S, Xiong W, Yin C, Xie X, Jin YJ, et al. 2019. Overexpression of OsARD1 improves submergence, drought, and salt tolerances of seedling through the enhancement of ethylene synthesis in rice. Frontiers in Plant Science 10:1088 doi: 10.3389/fpls.2019.01088 |
| [111] |
Friedman EJ, Wang HX, Jiang K, Perovic I, Deshpande A, et al. 2011. Acireductone dioxygenase 1 (ARD1) is an effector of the heterotrimeric G protein β subunit in Arabidopsis. Journal of Biological Chemistry 286:30107−18 doi: 10.1074/jbc.M111.227256 |
| [112] |
Jeffery CJ. 2003. Moonlighting proteins: old proteins learning new tricks. Trends in Genetics 19:415−17 doi: 10.1016/S0168-9525(03)00167-7 |
| [113] |
Guo T, Zhang X, Li Y, Liu C, Wang N, et al. 2020. Overexpression of MdARD4 accelerates fruit ripening and increases cold hardiness in tomato. International Journal of Molecular Sciences 21(17):6182 doi: 10.3390/ijms21176182 |
| [114] |
Backlund PS, Jr., Smith RA. 1981. Methionine synthesis from 5'-methylthioadenosine in rat liver. Journal of Biological Chemistry 256:1533−35 doi: 10.1016/S0021-9258(19)69835-2 |
| [115] |
Ellens KW, Richardson LGL, Frelin O, Collins J, Ribeiro CL, et al. 2015. Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants. Phytochemistry 113:160−69 doi: 10.1016/j.phytochem.2014.04.012 |
| [116] |
Koper K, Han SW, Pastor DC, Yoshikuni Y, Maeda HA. 2022. Evolutionary origin and functional diversification of aminotransferases. Journal of Biological Chemistry 298:102122 doi: 10.1016/j.jbc.2022.102122 |
| [117] |
Berger BJ, Dai WW, Wilson J. 1998. Methionine formation from alpha-ketomethiobutyrate in the trypanosomatid Crithidia fasciculata. FEMS Microbiology Letters 165:305−12 doi: 10.1111/j.1574-6968.1998.tb13162.x |
| [118] |
Heilbronn J, Wilson J, Berger BJ. 1999. Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae. Journal of Bacteriology 181:1739−47 doi: 10.1128/JB.181.6.1739-1747.1999 |
| [119] |
Venos ES, Knodel MH, Radford CL, Berger BJ. 2004. Branched-chain amino acid aminotransferase and methionine formation in Mycobacterium tuberculosis. BMC Microbiology 4:39 doi: 10.1186/1471-2180-4-39 |
| [120] |
Cooper AJL. 2004. The role of glutamine transaminase K (GTK) in sulfur and α-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants. Neurochemistry International 44:557−77 doi: 10.1016/j.neuint.2003.12.002 |
| [121] |
Zheng Z, Guo Y, Novák O, Dai X, Zhao Y, et al. 2013. Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nature Chemical Biology 9:244−46 doi: 10.1038/nchembio.1178 |
| [122] |
Wu J, Chen Y, Huang Y, Hao B, Dai S, et al. 2024. The cytosolic aminotransferase VAS1 coordinates aromatic amino acid biosynthesis and metabolism. Science Advances 10:eadk0738 doi: 10.1126/sciadv.adk0738 |
| [123] |
Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42 doi: 10.1016/j.molp.2023.09.010 |