[1]

Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Science Advances 3:e1700782

doi: 10.1126/sciadv.1700782
[2]

Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, et al. 2015. Plastic waste inputs from land into the ocean. Science 347:768−71

doi: 10.1126/science.1260352
[3]

Kwak JI, An YJ. 2021. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials 402:124034

doi: 10.1016/j.jhazmat.2020.124034
[4]

Gigault J, Halle AT, Baudrimont M, Pascal PY, Gauffre F, et al. 2018. Current opinion: what is a nanoplastic? Environmental Pollution 235:1030−34

doi: 10.1016/j.envpol.2018.01.024
[5]

Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, et al. 2009. Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology 53:52−62

doi: 10.1016/j.yrtph.2008.10.008
[6]

Li X, Du X, He Z, Zhou R, Guo Y, et al. 2024. Transcriptome mechanisms of dandelion under stress of polystyrene and dibutyl phthalate and quantitative tracing of nanoplastics. Science of the Total Environment 948:174894

doi: 10.1016/j.scitotenv.2024.174894
[7]

Li Z, Li Q, Li R, Zhou J, Wang G. 2021. The distribution and impact of polystyrene nanoplastics on cucumber plants. Environmental Science and Pollution Research International 28:16042−53

doi: 10.1007/s11356-020-11702-2
[8]

Lozano YM, Rillig MC. 2020. Effects of microplastic fibers and drought on plant communities. Environmental Science & Technology 54:6166−73

doi: 10.1021/acs.est.0c01051
[9]

Bandmann V, Müller JD, Köhler T, Homann U. 2012. Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Letters 586:3626−32

doi: 10.1016/j.febslet.2012.08.008
[10]

Sun XD, Yuan XZ, Jia Y, Feng LJ, Zhu FP, et al. 2020. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology 15:755−60

doi: 10.1038/s41565-020-0707-4
[11]

Xu L, Liu C, Ren Y, Huang Y, Liu Y, et al. 2024. Nanoplastic toxicity induces metabolic shifts in Populus × euramericana cv. '74/76' revealed by multi-omics analysis. Journal of Hazardous Materials 470:134148

doi: 10.1016/j.jhazmat.2024.134148
[12]

Spanò C, Giorgetti L, Bottega S, Muccifora S, Ruffini Castiglione M. 2024. Titanium dioxide nanoparticles enhance the detrimental effect of polystyrene nanoplastics on cell and plant physiology of Vicia lens (L.) Coss. & Germ. seedlings. Frontiers in Plant Science 15:1391751

doi: 10.3389/fpls.2024.1391751
[13]

Gowtham HG, Shilpa N, Singh SB, Aiyaz M, Abhilash MR, et al. 2024. Toxicological effects of nanoparticles in plants: mechanisms involved at morphological, physiological, biochemical and molecular levels. Physiology and Biochemistry 210:108604

doi: 10.1016/j.plaphy.2024.108604
[14]

Hussain K, Fox JP, Ma X, Rossi L. 2025. Impact of polystyrene nanoplastics on physiology, nutrient uptake, and root system architecture of aeroponically grown citrus plants. NanoImpact 37:100536

doi: 10.1016/j.impact.2024.100536
[15]

Jo YK, Kim BH, Jung G. 2009. Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Disease 93:1037−43

doi: 10.1094/PDIS-93-10-1037
[16]

Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, et al. 2021. Silver nanoparticles as potential antiviral agents. Pharmaceutics 13:2034

doi: 10.3390/pharmaceutics13122034
[17]

Ip M, Lui SL, Poon VKM, Lung I, Burd A. 2006. Antimicrobial activities of silver dressings: an in vitro comparison. Journal of Medical Microbiology 55:59−63

doi: 10.1099/jmm.0.46124-0
[18]

McGee CF. 2020. The effects of silver nanoparticles on the microbial nitrogen cycle: a review of the known risks. Environmental Science and Pollution Research International 27:31061−73

doi: 10.1007/s11356-020-09548-9
[19]

Rani PU, Yasur J, Loke KS, Dutta D. 2016. Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiologiae Plantarum 38:58

doi: 10.1007/s11738-016-2074-1
[20]

Jiang HS, Qiu XN, Li GB, Li W, Yin LY. 2014. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environmental Toxicology and Chemistry 33:1398−405

doi: 10.1002/etc.2577
[21]

Zhong W, Tian X, Zhang Y, Tang X, Xiao S, et al. 2024. Effects of different doses of sUV-B exposure on taxane compounds' metabolism in Taxus wallichiana var. Mairei. International Journal of Molecular Sciences 25:6407

doi: 10.3390/ijms25126407
[22]

Zhang H, Lin W, Ma R, Zang Y, Hou K, et al. 2024. Fungal endophytes of Taxus species and regulatory effect of two strains on taxol synthesis. BMC Microbiology 24:291

doi: 10.1186/s12866-024-03445-8
[23]

Yu C, Hou K, Zhang H, Liang X, Chen C, et al. 2023. Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. The Plant Journal 115:1243−60

doi: 10.1111/tpj.16315
[24]

Carević T, Stojković D, Ivanov M. 2023. Plant flavonoids as reservoirs of therapeutics against microbial virulence traits: a comprehensive review update. Current Pharmaceutical Design 29:914−27

doi: 10.2174/1381612829666230413085029
[25]

Zhan X, Zang Y, Ma R, Lin W, Li XL, et al. 2024. Mass spectrometry-imaging analysis of active ingredients in the leaves of Taxus cuspidata. ACS Omega 9:18634−42

doi: 10.1021/acsomega.4c01440
[26]

Gao X, Zhang N, Xie W. 2024. Advancements in the cultivation, active components, and pharmacological activities of Taxus mairei. Molecules 29:1128

doi: 10.3390/molecules29051128
[27]

Zhou M, Xu Y, Wang F, Yang X, Lu S, et al. 2023. Effects of seasonal temperature regimes on embryo growth and endogenous hormones of Taxus chinensis var. mairei seeds. Frontiers in Plant Science 14:1114629

doi: 10.3389/fpls.2023.1114629
[28]

Wang M, Liang X, Ma R, Lin W, Fang Z, et al. 2025. Correlation analysis of secondary metabolism and endophytic fungal assembles provide insights into screening efficient taxol-related fungal elicitors. Plant, Cell & Environment Early View

doi: 10.1111/pce.15422
[29]

Feng S, Hou K, Zhang H, Chen C, Huang J, et al. 2023. Investigation of the role of TmMYB16/123 and their targets (TmMTP1/11) in the tolerance of Taxus media to cadmium. Tree Physiology 43:1009−22

doi: 10.1093/treephys/tpad019
[30]

Yu C, Jiang Z, Xie Q, Wang Q, Wang L, et al. 2024. Role of TgVIN1 and TgPEPCK in sugar/starch and lipid metabolism pathways in Torreya grandis seeds under foliar fertilizer treatments. International Journal of Biological Macromolecules 291:138944

doi: 10.1016/j.ijbiomac.2024.138944
[31]

Sabzehzari M, Zeinali M, Naghavi MR. 2020. Alternative sources and metabolic engineering of Taxol: advances and future perspectives. Biotechnology Advances 43:107569

doi: 10.1016/j.biotechadv.2020.107569
[32]

MacLeod M, Arp HPH, Tekman MB, Jahnke A. 2021. The global threat from plastic pollution. Science 373:61−65

doi: 10.1126/science.abg5433
[33]

Yu C, Zeng H, Wang Q, Chen W, Chen W, et al. 2022. Multi-omics analysis reveals the molecular responses of Torreya grandis shoots to nanoplastic pollutant. Journal of Hazardous Materials 436:129181

doi: 10.1016/j.jhazmat.2022.129181
[34]

Lee TY, Kim L, Kim D, An S, An YJ. 2022. Microplastics from shoe sole fragments cause oxidative stress in a plant (Vigna radiata) and impair soil environment. Journal of Hazardous Materials 429:128306

doi: 10.1016/j.jhazmat.2022.128306
[35]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[36]

Nadarajah KK. 2020. ROS homeostasis in abiotic stress tolerance in plants. International Journal of Molecular Sciences 21:5208

doi: 10.3390/ijms21155208
[37]

Thorpe GW, Reodica M, Davies MJ, Heeren G, Jarolim S, et al. 2013. Superoxide radicals have a protective role during H2O2 stress. Molecular Biology of the Cell 24:2876−84

doi: 10.1091/mbc.e13-01-0052
[38]

Meng D, Yu X, Ma L, Hu J, Liang Y, et al. 2017. Transcriptomic response of chinese yew (Taxus chinensis) to cold stress. Frontiers in Plant Science 8:468

doi: 10.3389/fpls.2017.00468
[39]

Ren F, Huang J, Yang Y. 2024. Unveiling the impact of microplastics and nanoplastics on vascular plants: a cellular metabolomic and transcriptomic review. Ecotoxicology and Environmental Safety 279:116490

doi: 10.1016/j.ecoenv.2024.116490
[40]

Lian Y, Liu W, Shi R, Zeb A, Wang Q, et al. 2022. Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil. Journal of Hazardous Materials 435:129057

doi: 10.1016/j.jhazmat.2022.129057
[41]

Yan Y, Yang H, Du Y, Li X, Li X. 2024. Effects and molecular mechanisms of polyethylene microplastic oxidation on wheat grain quality. Journal of Hazardous Materials 474:134816

doi: 10.1016/j.jhazmat.2024.134816
[42]

Wu X, Liu Y, Yin S, Xiao K, Xiong Q, et al. 2020. Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environmental Pollution 266:115159

doi: 10.1016/j.envpol.2020.115159
[43]

Wang Y, Xiang L, Wang F, Redmile-Gordon M, Bian Y, et al. 2023. Transcriptomic and metabolomic changes in lettuce triggered by microplastics-stress. Environmental Pollution 320:121081

doi: 10.1016/j.envpol.2023.121081
[44]

Hatami M, Ghorbanpour M. 2024. Metal and metal oxide nanoparticles-induced reactive oxygen species: phytotoxicity and detoxification mechanisms in plant cell. Plant Physiology and Biochemistry 213:108847

doi: 10.1016/j.plaphy.2024.108847
[45]

Zhan X, Liang X, Lin W, Ma R, Zang Y, et al. 2024. Cell type specific regulation of phenolic acid and flavonoid metabolism in Taxus mairei leaves. Industrial Crops and Products 219:118975

doi: 10.1016/j.indcrop.2024.118975
[46]

Ali A, Mashwani ZUR, Raja NI, Mohammad S, Ahmad MS, et al. 2024. Exposure of Caralluma tuberculata to biogenic selenium nanoparticles as in vitro rooting agent: Stimulates morpho-physiological and antioxidant defense system. PLoS One 19:e0297764

doi: 10.1371/journal.pone.0297764
[47]

Shahraki SH, Ahmadi T, Jamali B, Rahimi M. 2024. The biochemical and growth-associated traits of basil (Ocimum basilicum L.) affected by silver nanoparticles and silver. BMC Plant Biology 24:92

doi: 10.1186/s12870-024-04770-w
[48]

Lewis JA, Jacobo EP, Palmer N, Vermerris W, Sattler SE, et al. 2024. Structural and interactional analysis of the flavonoid pathway proteins: chalcone synthase, chalcone isomerase and chalcone isomerase-like protein. International Journal of Molecular Sciences 25:5651

doi: 10.3390/ijms25115651
[49]

Wang Z, Li S, Jian S, Ye F, Wang T, et al. 2022. Low temperature tolerance is impaired by polystyrene nanoplastics accumulated in cells of barley (Hordeum vulgare L.) plants. Journal of Hazardous Materials 426:127826

doi: 10.1016/j.jhazmat.2021.127826
[50]

Wu J, Wu Z, Yu T, Zhang J, Zhang Z, et al. 2024. Polyvinyl chloride and polybutylene adipate microplastics affect peanut and rhizobium symbiosis by interfering with multiple metabolic pathways. Journal of Hazardous Materials 475:134897

doi: 10.1016/j.jhazmat.2024.134897
[51]

Su J, Jiao T, Liu X, Zhu L, Ma B, et al. 2023. Calcyclin-binding protein-promoted degradation of MdFRUCTOKINASE2 regulates sugar homeostasis in apple. Plant Physiology 191:1052−65

doi: 10.1093/plphys/kiac549
[52]

Wu X, Hou H, Liu Y, Yin S, Bian S, et al. 2022. Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: a field study. Journal of Hazardous Materials 422:126834

doi: 10.1016/j.jhazmat.2021.126834
[53]

Xu C. 2024. The Oryza sativa transcriptome responds spatiotemporally to polystyrene nanoplastic stress. Science of the Total Environment 928:172449

doi: 10.1016/j.scitotenv.2024.172449