[1]

Qiao M, Hong C, Jiao Y, Hou S, Gao H. 2024. Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants 13(13):1808

doi: 10.3390/plants13131808
[2]

Li C, Chen S, Wang Y. 2023. Physiological and proteomic changes of Castanopsis fissa in response to drought stress. Scientific Reports 13:12567

doi: 10.1038/s41598-023-39235-x
[3]

Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ. 2019. Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environmental and Experimental Botany 161:41−49

doi: 10.1016/j.envexpbot.2018.10.033
[4]

Haghpanah M, Hashemipetroudi S, Arzani A, Araniti F. 2024. Drought Tolerance in Plants: Physiological and Molecular Responses. Plants 13(21):2962

doi: 10.3390/plants13212962
[5]

Manzoor I, Gulzar G, Wani SQ, Quadri S, Deshmukh S. 2024. Phytomelatonin crosstalk with plant growth regulators. In Melatonin. A Ubiquitous Pleiotropic Molecule, eds. Shafi SM, Baloch FS, Chung YS, Martínez AR. UK: Academic Press. pp 95–110. doi: 10.1016/b978-0-443-13814-0.00007-7

[6]

Khan M, Hussain A, Yun BW, Mun BG. 2024. Melatonin: The Multifaceted Molecule in Plant Growth and Defense. International Journal of Molecular Sciences 25(12):6799

doi: 10.3390/ijms25126799
[7]

Zeng W, Mostafa S, Lu Z, Jin B. 2022. Melatonin-mediated abiotic stress tolerance in plants. Frontiers in Plant Science 13:847175

doi: 10.3389/fpls.2022.847175
[8]

Khan Z, Jan R, Asif S, Farooq M, Jang YH, et al. 2024. Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Scientific Reports 14:1214

doi: 10.1038/s41598-024-51369-0
[9]

Dzinyela R, Hwarari D, Opoku KN, Yang L, Movahedi A. 2024. Enhancing Drought Stress Tolerance in Horticultural Plants through Melatonin-Mediated Phytohormonal Crosstalk. Plant Cell Reports 43(11):272

doi: 10.1007/s00299-024-03362-0
[10]

Moustafa-Farag M, Mahmoud A, Arnao MB, Sheteiwy MS, Dafea M, et al. 2020. Melatonin-induced water stress tolerance in plants: recent advances. Antioxidants 9(9):809

doi: 10.3390/antiox9090809
[11]

Khan NM, Ali A, Wan Y, Zhou G. 2024. Genome-wide identification of heavy-metal ATPases genes in Areca catechu: investigating their functionality under heavy metal exposure. BMC Plant Biology 24:484

doi: 10.1186/s12870-024-05201-6
[12]

Ahammed GJ, Xu W, Liu A, Chen S. 2019. Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environmental and Experimental Botany 161:303−11

doi: 10.1016/j.envexpbot.2018.06.006
[13]

Li H, Mo Y, Cui Q, Yang X, Guo Y, et al. 2019. Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and -susceptible watermelon genotypes. Plant Science 278:32−43

doi: 10.1016/j.plantsci.2018.10.016
[14]

Yan F, Wei H, Ding Y, Li W, Liu Z, et al. 2021. Melatonin regulates antioxidant strategy in response to continuous salt stress in rice seedlings. Plant Physiology and Biochemistry 165:239−50

doi: 10.1016/j.plaphy.2021.05.003
[15]

Yin X, Wei Y, Song W, Zhang H, Liu G, et al. 2020. Melatonin as an inducer of arecoline and their coordinated roles in anti-oxidative activity and immune responses. Food & Function 11(10):8788−99

doi: 10.1039/d0fo01841d
[16]

Luo C, Min W, Akhtar M, Lu X, Bai X, et al. 2022. Melatonin enhances drought tolerance in rice seedlings by modulating antioxidant systems, osmoregulation, and corresponding gene expression. International Journal of Molecular Sciences 23(20):12075

doi: 10.3390/ijms232012075
[17]

Young MD, Wakefield MJ, Smyth GK, Oshlack A. 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology 11(2):R14

doi: 10.1186/gb-2010-11-2-r14
[18]

Mao X, Cai T, Olyarchuk JG, Wei L. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787−93

doi: 10.1093/bioinformatics/bti430
[19]

Cao J, Murch SJ, O'Brien R, Saxena PK. 2006. Rapid method for accurate analysis of melatonin, serotonin and auxin in plant samples using liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 1134(1−2):333−37

doi: 10.1016/j.chroma.2006.09.079
[20]

Chen Q, Zhang B, Hicks LM, Wang S, Jez JM. 2009. A liquid chromatography–tandem mass spectrometry-based assay for indole-3-acetic acid–amido synthetase. Analytical Biochemistry 390(2):149−54

doi: 10.1016/j.ab.2009.04.027
[21]

Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, et al. 1995. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research 18(1):28−31

doi: 10.1111/j.1600-079X.1995.tb00136.x
[22]

Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39:205−7

doi: 10.1007/BF00018060
[23]

Sharma A, Wang J, Xu D, Tao S, Chong S, et al. 2020. Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Science of The Total Environment 713:136675

doi: 10.1016/j.scitotenv.2020.136675
[24]

Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science 151(1):59−66

doi: 10.1016/S0168-9452(99)00197-1
[25]

Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, et al. 2015. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L.) Pers.] by Exogenous Melatonin. Journal of Experimental Botany 66(3):681−94

doi: 10.1093/jxb/eru373
[26]

Barrs HD, Weatherley PE. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences 15(3):413

doi: 10.1071/BI9620413
[27]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12(4):357−60

doi: 10.1038/nmeth.3317
[28]

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33(3):290−95

doi: 10.1038/nbt.3122
[29]

Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. 2025. KEGG: biological systems database as a model of the real world. Nucleic Acids Research 53(D1):D672−D677

doi: 10.1093/nar/gkae909
[30]

Zhao C, Yang M, Wu X, Wang Y, Zhang R. 2021. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.). Plant Physiology and Biochemistry 168:128−42

doi: 10.1016/j.plaphy.2021.09.044
[31]

Huang B, Chen YE, Zhao YQ, Ding CB, Liao JQ, et al. 2019. Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Frontiers in Plant Science 10:677

doi: 10.3389/fpls.2019.00677
[32]

Sasi M, Awana M, Samota MK, Tyagi A, Kumar S, et al. 2021. Plant growth regulator induced mitigation of oxidative burst helps in the management of drought stress in rice (Oryza sativa L.). Environmental and Experimental Botany 185:104413

doi: 10.1016/j.envexpbot.2021.104413
[33]

Hu W, Zhang J, Wu Z, Loka DA, Zhao W, et al. 2022. Effects of single and combined exogenous application of abscisic acid and melatonin on cotton carbohydrate metabolism and yield under drought stress. Industrial Crops and Products 176:114302

doi: 10.1016/j.indcrop.2021.114302
[34]

Cao L, Jin X, Zhang Y, Zhang M, Wang Y. 2020. Transcriptomic and metabolomic profiling of melatonin treated soybean (Glycine max L.) under drought stress during grain filling period through regulation of secondary metabolite biosynthesis pathways. PLoS ONE 15:e0239701

doi: 10.1371/journal.pone.0239701
[35]

Imran M, Latif Khan A, Shahzad R, Aaqil Khan M, Bilal S, et al. 2021. Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB PLANTS 13:plab026

doi: 10.1093/aobpla/plab026
[36]

Fu J, Zhang S, Jiang H, Zhang X, Gao H, et al. 2022. Melatonin-induced cold and drought tolerance is regulated by brassinosteroids and hydrogen peroxide signaling in perennial ryegrass. Environmental and Experimental Botany 196:104815

doi: 10.1016/j.envexpbot.2022.104815
[37]

Sher A, Hassan MU, Sattar A, Ul-Allah S, Ijaz M, et al. 2023. Exogenous application of melatonin alleviates the drought stress by regulating the antioxidant systems and sugar contents in sorghum seedlings. Biochemical Systematics and Ecology 107:104620

doi: 10.1016/j.bse.2023.104620
[38]

Cui G, Zhao X, Liu S, Sun F, Zhang C, et al. 2017. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiology and Biochemistry 118:138−49

doi: 10.1016/j.plaphy.2017.06.014
[39]

Ahmad S, Muhammad I, Wang GY, Zeeshan M, Yang L, et al. 2021. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biology 21:368

doi: 10.1186/s12870-021-03160-w
[40]

Dai L, Li J, Harmens H, Zheng X, Zhang C. 2020. Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) Genotypes. Plant Physiology and Biochemistry 149:86−95

doi: 10.1016/j.plaphy.2020.01.039
[41]

Huang H, Ullah F, Zhou DX, Yi M, Zhao Y. 2019. Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science 10:800

doi: 10.3389/fpls.2019.00800
[42]

Liu J, Wang W, Wang L, Sun Y. 2015. Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regulation 77(3):317−26

doi: 10.1007/s10725-015-0066-6
[43]

Jungklang J, Saengnil K, Uthaibutra J. 2017. Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. Cv. Chiang Mai Pink. Saudi Journal of Biological Sciences 24(7):1505−12

doi: 10.1016/j.sjbs.2015.09.017
[44]

Talaat NB. 2023. Drought stress alleviator melatonin reconfigures water-stressed barley (Hordeum vulgare L.) plants' photosynthetic efficiency, antioxidant capacity, and endogenous phytohormone profile. International Journal of Molecular Sciences 24(22):16228

doi: 10.3390/ijms242216228
[45]

Zhang J, Shi Y, Zhang X, Du H, Xu B, et al. 2017. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environmental and Experimental Botany 138:36−45

doi: 10.1016/j.envexpbot.2017.02.012
[46]

Zhao C, Guo H, Wang J, Wang Y, Zhang R. 2021. Melatonin enhances drought tolerance by regulating leaf stomatal behavior, carbon and nitrogen metabolism, and related gene expression in maize plants. Frontiers in Plant Science 12:779382

doi: 10.3389/fpls.2021.779382
[47]

Jensen NB, Ottosen CO, Zhou R. 2023. Exogenous melatonin alters stomatal regulation in tomato seedlings subjected to combined heat and drought stress through mechanisms distinct from ABA signaling. Plants 12(5):1156

doi: 10.3390/plants12051156
[48]

Ali M, Pan Y, Liu H, Cheng Z. 2023. Melatonin interaction with abscisic acid in the regulation of abiotic stress in Solanaceae family plants. Frontiers in Plant Science 14:1271137

doi: 10.3389/fpls.2023.1271137
[49]

Chen X, Mo X, Hu S, Liu S. 2019. Relationship between fluorescence yield and photochemical yield under water stress and intermediate light conditions. Journal of Experimental Botany 70(1):301−13

doi: 10.1093/jxb/ery341
[50]

Lin S, Song XF, Mao HT, Li SQ, Gan JY, et al. 2022. Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress. Frontiers in Plant Science 13:966181

doi: 10.3389/fpls.2022.966181
[51]

Jiang D, Lu B, Liu L, Duan W, Meng Y, et al. 2021. Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs. BMC Plant Biology 21:331

doi: 10.1186/s12870-021-03082-7
[52]

Li X, Brestic M, Tan DX, Zivcak M, Zhu X, et al. 2018. Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient Mutant Wheat. Journal of Pineal Research 64:12453

doi: 10.1111/jpi.12453
[53]

Luo Y, Hu T, Huo Y, Wang L, Zhang L, et al. 2023. Transcriptomic and physiological analyses reveal the molecular mechanism through which exogenous melatonin increases drought stress tolerance in chrysanthemum. Plants 12:1489

doi: 10.3390/plants12071489
[54]

Debnath B, Li M, Liu S, Pan T, Ma C, et al. 2020. Melatonin-mediate acid rain stress tolerance mechanism through alteration of transcriptional factors and secondary metabolites gene expression in tomato. Ecotoxicology and Environmental Safety 200:110720

doi: 10.1016/j.ecoenv.2020.110720
[55]

Ju F, Sun L, Xiong C, Wang Z, Yu H, et al. 2023. Weighted gene co-expression network analysis revealed the key pathways and hub genes of potassium regulating cotton root adaptation to salt stress. Frontiers in Plant Science 14:1132877

doi: 10.3389/fpls.2023.1132877
[56]

Zahra M, Abrahamse H, George BP. 2024. Flavonoids: antioxidant powerhouses and their role in nanomedicine. Antioxidants 13(8):922

doi: 10.3390/antiox13080922
[57]

Zhou R, Yu X, Zhao T, Ottosen CO, Rosenqvist E, et al. 2019. Physiological analysis and transcriptome sequencing reveal the effects of combined cold and drought on tomato leaf. BMC Plant Biology 19:377

doi: 10.1186/s12870-019-1982-9
[58]

Li C, Tan DX, Liang D, Chang C, Jia D, et al. 2015. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two malus species under drought stress. Journal of Experimental Botany 66(3):669−80

doi: 10.1093/jxb/eru476
[59]

Xiang Y, Sun X, Gao S, Qin F, Dai M. 2017. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings. Molecular Plant 10(3):456−69

doi: 10.1016/j.molp.2016.10.003
[60]

Guo Y, Shi Y, Wang Y, Liu F, Li Z, et al. 2023. The Clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytologist 237(5):1728−44

doi: 10.1111/nph.18647
[61]

He Z, Wu J, Sun X, Dai M. 2019. The maize clade A PP2C phosphatases play critical roles in multiple abiotic stress responses. International Journal of Molecular Sciences 20(14):3573

doi: 10.3390/ijms20143573
[62]

Yang Q, Liu K, Niu X, Wang Q, Wan Y, et al. 2018. Genome-Wide Identification of PP2C Genes and Their Expression Profiling in Response to Drought and Cold Stresses in Medicago Truncatula. Scientific Reports 8:12841

doi: 10.1038/s41598-018-29627-9
[63]

Zhang X, Liu W, Lv Y, Bai J, Li T, et al. 2022. Comparative transcriptomics reveals new insights into melatonin-enhanced drought tolerance in naked oat seedlings. PeerJ 10:e13669

doi: 10.7717/peerj.13669
[64]

Jahan MS, Yang JY, Althaqafi MM, Alharbi BM, Wu HY, et al. 2024. Melatonin mitigates drought stress by increasing sucrose synthesis and suppressing abscisic acid biosynthesis in tomato seedlings. Physiologia Plantarum 176:e14457

doi: 10.1111/ppl.14457
[65]

Zhang H, Mao X, Wang C, Jing R. 2010. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE 5(12):e16041

doi: 10.1371/journal.pone.0016041
[66]

Hu Y, Chen X, Shen X. 2022. Regulatory network established by transcription factors transmits drought stress signals in plant. Stress Biology 2:26

doi: 10.1007/s44154-022-00048-z
[67]

Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, et al. 2014. Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9(3):e93462

doi: 10.1371/journal.pone.0093462
[68]

Yang L, Bu S, Zhao S, Wang N, Xiao J, et al. 2022. Transcriptome and physiological analysis of increase in drought stress tolerance by melatonin in tomato. PLoS ONE 17(5):e0267594

doi: 10.1371/journal.pone.0267594