| [1] |
Hronec M, Fulajtarová K. 2012. Selective transformation of furfural to cyclopentanone. Catalysis Communications 24:100−4 doi: 10.1016/j.catcom.2012.03.020 |
| [2] |
Yang Y, Dec JE. 2013. Bio-Ketones: Autoignition Characteristics and Their Potential as Fuels for HCCI Engines. SAE International Journal of Fuels and Lubricants 6:713−28 doi: 10.4271/2013-01-2627 |
| [3] |
Pepiot-Desjardins P, Pitsch H, Malhotra R, Kirby SR, Boehman AL. 2008. Structural group analysis for soot reduction tendency of oxygenated fuels. Combustion and Flame 154:191−205 doi: 10.1016/j.combustflame.2008.03.017 |
| [4] |
Tong Q, Chen H, He J, Su X, Wei Z, et al. 2021. Experimental studies of combustion and emission characteristics of diesel engine fueled with diesel/cyclopentanone blend. Energy Reports 7:6756−68 doi: 10.1016/j.egyr.2021.09.155 |
| [5] |
Bao X, Jiang Y, Xu H, Wang C, Lattimore T, et al. 2017. Laminar flame characteristics of cyclopentanone at elevated temperatures. Applied Energy 195:671−80 doi: 10.1016/j.apenergy.2017.03.031 |
| [6] |
Zhang K, Capriolo G, Kim G, Almansour B, Terracciano AC, et al. 2020. Experimental and kinetic modeling study of laminar burning velocities of cyclopentanone and its binary mixtures with ethanol and n-propanol. Energy & Fuels 34:11408−16 doi: 10.1021/acs.energyfuels.0c01565 |
| [7] |
Zhang K, Lokachari N, Ninnemann E, Khanniche S, Green WH, et al. 2019. An experimental, theoretical, and modeling study of the ignition behavior of cyclopentanone. Proceedings of the Combustion Institute 37:657−65 doi: 10.1016/j.proci.2018.06.097 |
| [8] |
Sun W, Tao T, Liao H, Hansen N, Yang B. 2019. Probing fuel-specific reaction intermediates from laminar premixed flames fueled by two C5 ketones and model interpretations. Proceedings of the Combustion Institute 37:1699−707 doi: 10.1016/j.proci.2018.05.157 |
| [9] |
Li W, Ye L, Fang Q, Zou J, Yang J, et al. 2021. Exploration on thermal decomposition of cyclopentanone: a flow reactor pyrolysis and kinetic modeling study. Energy & Fuels 35:14023−34 doi: 10.1021/acs.energyfuels.1c01672 |
| [10] |
Wang G, Li Y, Yuan W, Zhou Z, Wang Y, et al. 2017. Investigation on laminar burning velocities of benzene, toluene and ethylbenzene up to 20 atm. Combustion and Flame 184:312−23 doi: 10.1016/j.combustflame.2017.06.017 |
| [11] |
Kelley AP, Law CK. 2009. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combustion and Flame 156:1844−51 doi: 10.1016/j.combustflame.2009.04.004 |
| [12] |
CHEMKIN-PRO 15112. 2011. Reaction Design: San Diego. |
| [13] |
Yu H, Han W, Santner J, Gou X, Sohn CH, et al. 2014. Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames. Combustion and Flame 161:2815−24 doi: 10.1016/j.combustflame.2014.05.012 |
| [14] |
de Vries J, Lowry WB, Serinyel Z, Curran HJ, Petersen EL. 2011. Laminar flame speed measurements of dimethyl ether in air at pressures up to 10atm. Fuel 90:331−38 doi: 10.1016/j.fuel.2010.07.040 |
| [15] |
Wang H, You X, Joshi AV, Davis SG, Laskin A, et al. 2007. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. https://ignis.usc.edu:80/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm |
| [16] |
Yuan W, Li Y, Dagaut P, Yang J, Qi F. 2015. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation. Combustion and Flame 162:3−21 doi: 10.1016/j.combustflame.2014.07.009 |
| [17] |
Zhou CW, Li Y, O'Connor E, Somers KP, Thion S, et al. 2016. A comprehensive experimental and modeling study of isobutene oxidation. Combustion and Flame 167:353−79 doi: 10.1016/j.combustflame.2016.01.021 |
| [18] |
Serinyel Z, Chaumeix N, Black G, Simmie JM, Curran HJ. 2010. Experimental and chemical kinetic modeling study of 3-pentanone oxidation. The Journal of Physical Chemistry A 114:12176−86 doi: 10.1021/jp107167f |
| [19] |
Bradley D, Hicks RA, Lawes M, Sheppard CGW, Woolley R. 1998. The measurement of laminar burning velocities and markstein numbers for Iso-octane–Air and Iso-octane–n-Heptane–Air mixtures at elevated temperatures and pressures in an explosion bomb. Combustion and Flame 115:126−44 doi: 10.1016/S0010-2180(97)00349-0 |
| [20] |
Ma S, Zhang X, Dmitriev A, Shmakov A, Korobeinichev O, et al. 2021. Revisit laminar premixed ethylene flames at elevated pressures: A mass spectrometric and laminar flame propagation study. Combustion and Flame 230:111422 doi: 10.1016/j.combustflame.2021.111422 |
| [21] |
Li W, Wang G, Li Y, Li T, Zhang Y, et al. 2018. Experimental and kinetic modeling investigation on pyrolysis and combustion of n-butane and i-butane at various pressures. Combustion and Flame 191:126−41 doi: 10.1016/j.combustflame.2018.01.002 |
| [22] |
Mei B, Zhang J, Ma S, Li W, Dmitriev A, et al. 2023. Revisit flame chemistry of propene at elevated pressures: insight into pressure effects on chemical structure and laminar flame propagation. Combustion and Flame 251:112725 doi: 10.1016/j.combustflame.2023.112725 |
| [23] |
Li W, Zhang Y, Mei B, Li Y, Cao C, et al. 2019. Experimental and kinetic modeling study of n-propanol and i-propanol combustion: Flow reactor pyrolysis and laminar flame propagation. Combustion and Flame 207:171−85 doi: 10.1016/j.combustflame.2019.05.040 |
| [24] |
Veloo PS, Egolfopoulos FN. 2011. Flame propagation of butanol isomers/air mixtures. Proceedings of the Combustion Institute 33:987−93 doi: 10.1016/j.proci.2010.06.163 |
| [25] |
Mei B, Zhang X, Ma S, Cui M, Guo H, et al. 2019. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combustion and Flame 210:236−46 doi: 10.1016/j.combustflame.2019.08.033 |
| [26] |
Goswami M, Derks SCR, Coumans K, Slikker WJ, de Andrade Oliveira MH, et al. 2013. The effect of elevated pressures on the laminar burning velocity of methane + air mixtures. Combustion and Flame 160:1627−35 doi: 10.1016/j.combustflame.2013.03.032 |
| [27] |
Wang G, Li Y, Yuan W, Wang Y, Zhou Z, et al. 2018. Investigation on laminar flame propagation of n-butanol/air and n-butanol/O2/He mixtures at pressures up to 20 atm. Combustion and Flame 191:368−80 doi: 10.1016/j.combustflame.2018.01.025 |
| [28] |
Li XL, Deng J, Shi J, Pan T, Yu CG, et al. 2015. Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu–Co catalysts. Green Chemistry 17:1038−46 doi: 10.1039/C4GC01601G |
| [29] |
Cai L, Kröger L, Döntgen M, Leonhard K, Narayanaswamy K, et al. 2019. Exploring the combustion chemistry of a novel lignocellulose-derived biofuel: cyclopentanol. Part I: quantum chemistry calculation and kinetic modeling. Combustion and Flame 210:490−501 doi: 10.1016/j.combustflame.2019.07.012 |
| [30] |
Zhao H, Wang J, Cai X, Tian Z, Li Q, et al. 2018. A comparison study of cyclopentane and cyclohexane laminar flame speeds at elevated pressures and temperatures. Fuel 234:238−46 doi: 10.1016/j.fuel.2018.06.134 |
| [31] |
Cai L, Minwegen H, Kruse S, Daniel Büttgen R, Hesse R, et al. 2019. Exploring the combustion chemistry of a novel lignocellulose-derived biofuel: cyclopentanol. Part II: experiment, model validation, and functional group analysis. Combustion and Flame 210:134−44 doi: 10.1016/j.combustflame.2019.08.025 |