| [1] |
Xie D, Xu Y, Wang J, Liu W, Zhou Q, et al. 2019. The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nature Communications 10:5158 doi: 10.1038/s41467-019-13185-3 |
| [2] |
The Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences. 2010. Chinese vegetable cultivation. China: China Agriculture Press. pp. 557−58 |
| [3] |
Sreenivas KM, Chaudhari K, Lele SS. 2011. Ash gourd peel wax: extraction, characterization, and application as an edible coat for fruits. Food Science and Biotechnology 20:383−87 doi: 10.1007/s10068-011-0054-1 |
| [4] |
Gu M, Fan S, Liu G, Guo L, Ding X, et al. 2013. Extract of wax gourd peel prevents high-fat diet-induced hyperlipidemia in C57BL/6 Mice via the inhibition of the PPARγ pathway. Evidence-Based Complementary and Alternative Medicine 2013:342561 doi: 10.1155/2013/342561 |
| [5] |
Perrot-Rechenmann C. 2010. Cellular responses to auxin: division versus expansion. Cold Spring Harbor Perspectives in Biology 2:a001446 doi: 10.1101/cshperspect.a001446 |
| [6] |
Wawrzyńska A, Sirko A. 2024. Sulfate availability and hormonal signaling in the coordination of plant growth and development. International Journal of Molecular Sciences 25:3978 doi: 10.3390/ijms25073978 |
| [7] |
Choi HW. 2024. From the photosynthesis to hormone biosynthesis in p lants. The Plant Pathology Journal 40:99−105 doi: 10.5423/PPJ.RW.01.2024.0006 |
| [8] |
Qin Q, Li G, Jin L, Huang Y, Wang Y, et al. 2020. Auxin response factors (ARFs) differentially regulate rice antiviral immune response against rice dwarf virus. PLoS Pathogens 16:e1009118 doi: 10.1371/journal.ppat.1009118 |
| [9] |
Zhang Y, Yang C, Liu S, Xie Z, Chang H, et al. 2024. Phytohormones-mediated strategies for mitigation of heavy metals toxicity in plants focused on sustainable production. Plant Cell Reports 43:99 doi: 10.1007/s00299-024-03189-9 |
| [10] |
Zheng L, Hu Y, Yang T, Wang Z, Wang D, et al. 2024. A root cap-localized NAC transcription factor controls root halotropic response to salt stress in Arabidopsis. Nature Communications 15:2061 doi: 10.1038/s41467-024-46482-7 |
| [11] |
Zhao Y. 2014. Auxin biosynthesis. The Arabidopsis Book 2014:e0173 doi: 10.1199/tab.0173 |
| [12] |
Gabarain VB, Ibeas MA, Salinas-Grenet H, Estevez JM. 2024. Auxin signaling gets oxidative to promote root hair growth. Molecular Plant 17:696−98 doi: 10.1016/j.molp.2024.04.007 |
| [13] |
Zhang Q, Gong M, Xu X, Li H, Deng W. 2022. Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells 11:2761 doi: 10.3390/cells11172761 |
| [14] |
Saini S, Sharma I, Kaur N, Pati PK. 2013. Auxin: a master regulator in plant root development. Plant Cell Reports 32:741−57 doi: 10.1007/s00299-013-1430-5 |
| [15] |
Rogers ED, Benfey PN. 2015. Regulation of plant root system architecture: implications for crop advancement. Current Opinion in Biotechnology 32:93−98 doi: 10.1016/j.copbio.2014.11.015 |
| [16] |
Grunewald W, De Smet I, Lewis DR, Löfke C, Jansen L, et al. 2012. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 109:1554−59 doi: 10.1073/pnas.1121134109 |
| [17] |
Rellan-Alvarez R, Lobet G, Dinneny JR. 2016. Environmental Control of Root System Biology. Annual Review of Plant Biology 67:619−42 doi: 10.1146/annurev-arplant-043015-111848 |
| [18] |
Cavallari N, Artner C, Benkova E. 2021. Auxin-regulated lateral root organogenesis. Cold Spring Harbor Perspectives in Biology 13:a039941 doi: 10.1101/cshperspect.a039941 |
| [19] |
Huang Y, Liu L, Hu H, Tang N, Shi L, et al. 2022. Arabidopsis ERF012 is a versatile regulator of plant growth, development and abiotic stress responses. International Journal of Molecular Sciences 23:6841 doi: 10.3390/ijms23126841 |
| [20] |
Templalexis D, Tsitsekian D, Liu C, Daras G, Šimura J, et al. 2022. Potassium transporter TRH1/KUP4 contributes to distinct auxin-mediated root system architecture responses. Plant Physiology 188:1043−60 doi: 10.1093/plphys/kiab472 |
| [21] |
Wan Y, Jasik J, Wang L, Hao H, Volkmann D, et al. 2012. The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. The Plant Cell 24:551−65 doi: 10.1105/tpc.111.094284 |
| [22] |
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890 doi: 10.1093/bioinformatics/bty560 |
| [23] |
Zhang Y, Park C, Bennett C, Thornton M, Kim D. 2021. Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Research 31:1290−95 doi: 10.1101/gr.275193.120 |
| [24] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8 |
| [25] |
Varet H, Brillet-Guéguen L, Coppée JY, Dillies MA. 2016. SARTools: a DESeq2- and EdgeR-based R Pipeline for comprehensive differential analysis of RNA-Seq data. PLoS One 11:e0157022 doi: 10.1371/journal.pone.0157022 |
| [26] |
He C, Luo C, Yan J, Zhai X, Liu W, et al. 2024. Genome-wide identification of the OVATE family proteins and functional analysis of BhiOFP1, BhiOFP5, and BhiOFP18 during fruit development in wax gourd (Benincasa hispida). Plant Physiology and Biochemistry 216:109135 doi: 10.1016/j.plaphy.2024.109135 |
| [27] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
| [28] |
Ikeyama Y, Tasaka M, Fukaki H. 2010. RLF, a cytochrome b5-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19-mediated auxin signaling in Arabidopsis thaliana. The Plant Journal 62:865−75 doi: 10.1111/j.1365-313X.2010.04199.x |
| [29] |
Mangano S, Denita-Juarez SP, Choi HS, Marzol E, Hwang Y, et al. 2017. Molecular link between auxin and ROS-mediated polar growth. Proceedings of the National Academy of Sciences of the United States of America 114:5289−94 doi: 10.1073/pnas.1701536114 |
| [30] |
Roychoudhry S, Kepinski S. 2021. Auxin in root development. Cold Spring Harbor Perspectives in Biology 14:a039933 doi: 10.1101/cshperspect.a039933 |
| [31] |
Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, et al. 2007. Auxin, actin and growth of the Arabidopsis thaliana primary root. The Plant Journal 50:514−28 doi: 10.1111/j.1365-313X.2007.03068.x |
| [32] |
Zhu J, Geisler M. 2015. Keeping it all together: auxin-actin crosstalk in plant development. Journal of Experimental Botany 66:4983−98 doi: 10.1093/jxb/erv308 |
| [33] |
Bahmani R, Kim DG, Modareszadeh M, Thompson AJ, Park JH, et al. 2020. The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA). Environmental Pollution 257:113516 doi: 10.1016/j.envpol.2019.113516 |
| [34] |
Han EH, Petrella DP, Blakeslee JJ. 2017. 'Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. Journal of Experimental Botany 68:3071−89 doi: 10.1093/jxb/erx127 |
| [35] |
Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, et al. 2012. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119−22 doi: 10.1038/nature11001 |
| [36] |
Chen J, Hu Y, Hao P, Tsering T, Xia J, et al. 2023. ABCB-mediated shootward auxin transport feeds into the root clock. Embo Reports 24:e56271 doi: 10.15252/embr.202256271 |
| [37] |
Peer WA, Blakeslee JJ, Yang H, Murphy AS. 2011. Seven things we think we know about auxin transport. Molecular Plant 4:487−504 doi: 10.1093/mp/ssr034 |
| [38] |
Swarup K, Benková E, Swarup R, Casimiro I, Péret B, et al. 2008. The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology 10:946−54 doi: 10.1038/ncb1754 |
| [39] |
González-Hernández AI, Scalschi L, García-Agustín P, Camañes G. 2020. Exogenous carbon compounds modulate tomato root development. Plants 9:387 doi: 10.3390/plants9070837 |
| [40] |
Péret B, Middleton AM, French AP, Larrieu A, Bishopp A, et al. 2013. Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology 9:699 doi: 10.1038/msb.2013.43 |
| [41] |
Zhu H, Li H, Yu J, Zhao H, Zhang K, et al. 2023. Regulatory Mechanisms of ArAux/IAA13 and ArAux/IAA16 in the Rooting Process of Acer rubrum. Genes 14:1206 doi: 10.3390/genes14061206 |
| [42] |
Wang W, Zheng Y, Qiu L, Yang D, Zhao Z, et al. 2024. Genome-wide identification of the SAUR gene family and screening for SmSAURs involved in root development in Salvia miltiorrhiza. Plant Cell Reports 43:165 doi: 10.1007/s00299-024-03260-5 |
| [43] |
Cheng B, Zhou M, Tang T, Hassan MJ, Zhou J, et al. 2023. A Trifolium repens flavodoxin-like quinone reductase 1 (TrFQR1) improves plant adaptability to high temperature associated with oxidative homeostasis and lipids remodeling. The Plant Journal 115:369−85 doi: 10.1111/tpj.16230 |
| [44] |
Wang Y, Li HL, Zhou YK, Guo D, Zhu JH, et al. 2021. Transcriptomes analysis reveals novel insight into the molecular mechanisms of somatic embryogenesis in Hevea brasiliensis. BMC Genomics 22:183 doi: 10.1186/s12864-021-07501-9 |
| [45] |
Ajadi AA, Tong X, Wang H, Zhao J, Tang L, et al. 2020. Cyclin-dependent kinase inhibitors KRP1 and KRP2 are involved in grain filling and seed germination in rice (Oryza sativa L.). International Journal of Molecular Sciences 21:245 doi: 10.3390/ijms21010245 |