| [1] |
Sajeev N, Koornneef M, Bentsink L. 2024. A commitment for life: decades of unraveling the molecular mechanisms behind seed dormancy and germination. The Plant Cell 36(5):1358−76 doi: 10.1093/plcell/koad328 |
| [2] |
Reed RC, Bradford KJ, Khanday I. 2022. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity 128:450−59 doi: 10.1038/s41437-022-00497-2 |
| [3] |
Penfield S. 2017. Seed biology – from lab to field. Journal of Experimental Botany 68(4):761−63 doi: 10.1093/jxb/erx021 |
| [4] |
Née G, Xiang Y, Soppe WJJ. 2017. The release of dormancy, a wake-up call for seeds to germinate. Current Opinion in Plant Biology 35:8−14 doi: 10.1016/j.pbi.2016.09.002 |
| [5] |
Penfield S. 2017. Seed dormancy and germination. Current Biology 27(17):R874−R878 doi: 10.1016/j.cub.2017.05.050 |
| [6] |
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, et al. 2022. Progress in soybean functional genomics over the past decade. Plant Biotechnology Journal 20(2):256−82 doi: 10.1111/pbi.13682 |
| [7] |
Du H, Fang C, Li Y, Kong F, Liu B. 2023. Understandings and future challenges in soybean functional genomics and molecular breeding. Journal of Integrative Plant Biology 65(2):468−95 doi: 10.1111/jipb.13433 |
| [8] |
Hu Y, Liu Y, Wei JJ, Zhang WK, Chen SY, et al. 2023. Regulation of seed traits in soybean. aBIOTECH 4(4):372−85 doi: 10.1007/s42994-023-00122-8 |
| [9] |
Wang L, Ma H, Song L, Shu Y, Gu W. 2012. Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. Journal of Proteomics 75(7):2109−27 doi: 10.1016/j.jprot.2012.01.007 |
| [10] |
Shu Y, Zhou Y, Mu K, Hu H, Chen M, et al. 2020. A transcriptomic analysis reveals soybean seed pre-harvest deterioration resistance pathways under high temperature and humidity stress. Genome 63(2):115−24 doi: 10.1139/gen-2019-0094 |
| [11] |
Dargahi H, Tanya P, Srinives P. 2014. Mapping of the genomic regions controlling seed storability in soybean (Glycine max L.). Journal of Genetics 93(2):365−70 doi: 10.1007/s12041-014-0381-0 |
| [12] |
Wang M, Li W, Fang C, Xu F, Liu Y, et al. 2018. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics 50(10):1435−41 doi: 10.1038/s41588-018-0229-2 |
| [13] |
Zhang W, Xu W, Li S, Zhang H, Liu X, et al. 2022. GmAOC4 modulates seed germination by regulating JA biosynthesis in soybean. Theoretical and Applied Genetics 135(2):439−47 doi: 10.1007/s00122-021-03974-0 |
| [14] |
Tian R, Kong Y, Shao Z, Zhang H, Li X, et al. 2022. Discovery of genetic loci and causal genes for seed germination via deep re-sequencing in soybean. Molecular Breeding 42(8):45 doi: 10.1007/s11032-022-01316-6 |
| [15] |
Zhang Z, Wang W, Ali S, Luo X, Xie L. 2022. CRISPR/Cas9-mediated multiple knockouts in abscisic acid receptor genes reduced the sensitivity to ABA during soybean seed germination. International Journal of Molecular Sciences 23(24):16173 doi: 10.3390/ijms232416173 |
| [16] |
Haslam TM, Feussner I. 2022. Diversity in Sphingolipid metabolism across Land Plants. Journal of Experimental Botany 73(9):2785−98 doi: 10.1093/jxb/erab558 |
| [17] |
Sperling P, Heinz E. 2003. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1632:1−15 doi: 10.1016/S1388-1981(03)00033-7 |
| [18] |
Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB. 2013. Plant sphingolipids: function follows form. Current Opinion in Plant Biology 16(3):350−57 doi: 10.1016/j.pbi.2013.02.009 |
| [19] |
Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB. 2006. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. The Plant Cell 18(12):3576−93 doi: 10.1105/tpc.105.040774 |
| [20] |
Chao DY, Gable K, Chen M, Baxter I, Dietrich CR, et al. 2011. Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. The Plant Cell 23(3):1061−81 doi: 10.1105/tpc.110.079095 |
| [21] |
Merrill AH Jr. 2011. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chemical Reviews 111:6387−422 doi: 10.1021/cr2002917 |
| [22] |
Berkey R, Bendigeri D, Xiao S. 2012. Sphingolipids and plant defense/disease: the "death" connection and beyond. Frontiers in Plant Science 3:68 doi: 10.3389/fpls.2012.00068 |
| [23] |
Luttgeharm KD, Kimberlin AN, Cahoon EB. 2016. Plant sphingolipid metabolism and function. In Lipids in Plant and Algae Development, eds Nakamura Y, Li-Beisson Y. Volume 86. pp. 249−86. doi: 10.1007/978-3-319-25979-6_11 |
| [24] |
Chen M, Markham JE, Dietrich CR, Jaworski JG, Cahoon EB. 2008. Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. The Plant Cell 20(7):1862−78 doi: 10.1105/tpc.107.057851 |
| [25] |
Chen M, Markham JE, Cahoon EB. 2012. Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. The Plant Journal 69(5):769−81 doi: 10.1111/j.1365-313X.2011.04829.x |
| [26] |
Li S, Cong Y, Liu Y, Wang T, Shuai Q, et al. 2017. Optimization of Agrobacterium-mediated transformation in soybean. Frontiers in Plant Science 8:246 doi: 10.3389/fpls.2017.00246 |
| [27] |
Xu F, Wang L, Xu J, Chen Q, Ma C, et al. 2023. GhIQD10 interacts with GhCaM7 to control cotton fiber elongation via calcium signaling. The Crop Journal 11(2):447−56 doi: 10.1016/j.cj.2022.08.011 |
| [28] |
Xu F, Huang L, Wang J, Ma C, Tan Y, et al. 2022. Sphingolipid synthesis inhibitor fumonisin B1 causes verticillium wilt in cotton. Journal of Integrative Plant Biology 64(4):836−42 doi: 10.1111/jipb.13241 |
| [29] |
Welti R, Li W, Li M, Sang Y, Biesiada H, et al. 2002. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. Journal of Biological Chemistry 277(35):31994−2002 doi: 10.1074/jbc.M205375200 |
| [30] |
Liu N, Wang N, Bao J, Zhu H, Wang L, et al. 2020. Lipidomic analysis reveals the importance of GIPCs in Arabidopsis leaf extracellular vesicles. Molecular Plant 13(10):1523−32 doi: 10.1016/j.molp.2020.07.016 |
| [31] |
Xu F, Chen Q, Huang L, Luo M. 2021. Advances about the roles of membranes in cotton fiber development. Membranes 11(7):471 doi: 10.3390/membranes11070471 |
| [32] |
Fu J, Chu J, Sun X, Wang J, Yan C. 2012. Simple, rapid, and simultaneous assay of multiple carboxyl containing phytohormones in wounded tomatoes by UPLC-MS/MS using single SPE purification and isotope dilution. Analytical Sciences 28(11):1081−87 doi: 10.2116/analsci.28.1081 |
| [33] |
Breslow DK, Weissman JS. 2010. Membranes in balance: mechanisms of sphingolipid homeostasis. Molecular Cell 40(2):267−79 doi: 10.1016/j.molcel.2010.10.005 |
| [34] |
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178−83 doi: 10.1038/nature08670 |
| [35] |
Rui Q, Tan X, Liu F, Bao Y. 2022. An update on the key factors required for plant Golgi structure maintenance. Frontiers in Plant Science 13:933283 doi: 10.3389/fpls.2022.933283 |
| [36] |
Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, et al. 2004. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. The Plant Cell 16(2):367−78 doi: 10.1105/tpc.018143 |
| [37] |
Yamaguchi S, Kamiya Y, Sun T. 2001. Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. The Plant Journal 28(4):443−53 doi: 10.1046/j.1365-313X.2001.01168.x |
| [38] |
Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, et al. 2005. Cold and light control seed germination through the bHLH transcription factor SPATULA. Current Biology 15(22):1998−2006 doi: 10.1016/j.cub.2005.11.010 |
| [39] |
Girin T, Paicu T, Stephenson P, Fuentes S, Körner E, et al. 2011. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis. The Plant Cell 23(10):3641−53 doi: 10.1105/tpc.111.090944 |
| [40] |
Vaistij FE, Gan Y, Penfield S, Gilday AD, Dave A, et al. 2013. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. Proceedings of the National Academy of Sciences of the United States of America 110(26):10866−71 doi: 10.1073/pnas.1301647110 |
| [41] |
Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56(1):165−85 doi: 10.1146/annurev.arplant.56.032604.144046 |
| [42] |
Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, et al. 1996. Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. The Plant Journal 10(4):655−61 doi: 10.1046/j.1365-313X.1996.10040655.x |
| [43] |
Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. 2001. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal 25(3):295−303 doi: 10.1046/j.1365-313x.2001.00965.x |
| [44] |
Carles C, Bies-Etheve N, Aspart L, Léon-Kloosterziel KM, Koornneef M, et al. 2002. Regulation of Arabidopsis thaliana Em genes: role of ABI5. The Plant Journal 30(3):373−83 doi: 10.1046/j.1365-313X.2002.01295.x |
| [45] |
Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH. 2002. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. The Plant Journal 32(3):317−28 doi: 10.1046/j.1365-313X.2002.01430.x |
| [46] |
Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, et al. 2008. Genetic analysis reveals that C19-GA 2-Oxidation is a major gibberellin inactivation pathway in Arabidopsis. The Plant Cell 20(9):2420−36 doi: 10.1105/tpc.108.058818 |
| [47] |
Yamauchi Y, Takeda-Kamiya N, Hanada A, Ogawa M, Kuwahara A, et al. 2007. Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds. Plant and Cell Physiology 48(3):555−61 doi: 10.1093/pcp/pcm023 |
| [48] |
Ma Y, Dai X, Xu Y, Luo W, Zheng X, et al. 2015. COLD1 confers chilling tolerance in rice. Cell 160(6):1209−21 doi: 10.1016/j.cell.2015.01.046 |
| [49] |
Kim BH, Kim SY, Nam KH. 2013. Assessing the diverse functions of BAK1 and its homologs in Arabidopsis, beyond BR signaling and PTI responses. Molecules and Cells 35(1):7−16 doi: 10.1007/s10059-013-2255-3 |
| [50] |
Liu N, Hou L, Bao J, Wang L, Chen X. 2021. Sphingolipid metabolism, transport, and functions in plants: recent progress and future perspectives. Plant Communications 2(5):100214 doi: 10.1016/j.xplc.2021.100214 |
| [51] |
Cacas JL, Buré C, Grosjean K, Gerbeau-Pissot P, Lherminier J, et al. 2016. Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. Plant Physiology 170(1):367−84 doi: 10.1104/pp.15.00564 |
| [52] |
Ali U, Li H, Wang X, Guo L. 2018. Emerging roles of sphingolipid signaling in plant response to biotic and abiotic stresses. Molecular Plant 11(11):1328−43 doi: 10.1016/j.molp.2018.10.001 |
| [53] |
Liu N, Zhang T, Liu Z, Chen X, Guo H, et al. 2020. Phytosphinganine affects plasmodesmata permeability via facilitating PDLP5-stimulated callose accumulation in Arabidopsis. Molecular Plant 13(1):128−43 doi: 10.1016/j.molp.2019.10.013 |
| [54] |
Jiang Z, Zhou X, Tao M, Yuan F, Liu L, et al. 2019. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature 572:341−46 doi: 10.1038/s41586-019-1449-z |
| [55] |
Lenarčič T, Albert I, Böhm H, Hodnik V, Pirc K, et al. 2017. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science 358(6369):1431−34 doi: 10.1126/science.aan6874 |