[1]

Lin P, Wang K, Wang Y, Hu Z, Yan C, et al. 2022. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biology 23(1):14

doi: 10.1186/s13059-021-02599-2
[2]

Ma J, Ye H, Rui Y, Chen G, Zhang N. 2011. Fatty acid composition of Camellia Oleifera oil. Journal Für Verbraucherschutz und Lebensmittelsicherheit 6:9−12

doi: 10.1007/s00003-010-0581-3
[3]

Quan W, Wang A, Gao C, Li C. 2022. Applications of Chinese Camellia oleifera and its by-products: a review. Frontiers in Chemistry 10:921246

doi: 10.3389/fchem.2022.921246
[4]

Xu Z, Yuan D, Tang Y, Wu L, Zhao Y. 2020. Camellia hainanica (theaceae) a new species from Hainan, supported from morphological characters and phylogenetic analysis. The Pakistan Journal of Botany 52(3):1025−32

doi: 10.30848/pjb2020-3(31)
[5]

Ye T, Yuan D, Li Y, Xiao S, Gong S, et al. 2021. Ploidy Identification of Camellia hainanica. Scientia Silvae Sinicae 57(7):61−69

doi: 10.11707/j.1001-7488.20210707
[6]

Qi H, Sun X, Yan W, Ye H, Chen J, et al. 2020. Genetic relationships and low diversity among the tea-oil Camellia species in Sect. Oleifera, a bulk woody oil crop in China. Frontiers in Plant Science 13:996731

doi: 10.3389/fpls.2022.996731
[7]

Zhang L, Shi Y, Gong W, Zhao G, Xiao S, et al. 2024. The tetraploid Camellia oleifera genome provides insights into evolution, agronomic traits, and genetic architecture of oil Camellia plants. Cell Reports 43(11):114902

doi: 10.1016/j.celrep.2024.114902
[8]

Ye Z, Wu Y, Muhammad ZUH, Yan W, Yu J, et al. 2020. Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island. PloS One 15:e0226888

doi: 10.1371/journal.pone.022688
[9]

Xu Z, Cao Z, Yao H, Li C, Zhao Y, et al. 2021. The physicochemical properties and fatty acid composition of two new woody oil resources: Camellia hainanica seed oil and Camellia sinensis seed oil. CyTA - Journal of Food 19:208−11

doi: 10.1080/19476337.2021.1879936
[10]

Duan Y, Li W, Zheng S, Sylvester SP, Li Y, et al. 2019. Functional androdioecy in the ornamental shrub Osmanthus delavayi (Oleaceae). PLoS One 14(9):e0221898

doi: 10.1371/journal.pone.0221898
[11]

Gong YB, Huang SQ. 2014. Interspecific variation in pollen-ovule ratio is negatively correlated with pollen transfer efficiency in a natural community. Plant Biology 16(4):843−47

doi: 10.1111/plb.12151
[12]

Fattorini R, Glover BJ. 2020. Molecular mechanisms of pollination biology. Annual Review of Plant Biology 71:487−515

doi: 10.1146/annurev-arplant-081519-040003
[13]

Cortés-Flores J, Hernández-Esquivel KB, González-Rodríguez A, Ibarra-Manríquez G. 2017. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors. American Journal of Botany 104(1):39−49

doi: 10.3732/ajb.1600305
[14]

Neal PR, Anderson GJ. 2005. Are 'mating systems' 'breeding systems' of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? Plant Systematics and Evolution 250(3−4):173−85

doi: 10.1007/s00606-004-0229-9
[15]

Dafni A. 1994. Pollination ecology: a practical approach. Brittonia 46(2):155−56

doi: 10.2307/2807163
[16]

Cruden RW. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31(1):32−46

doi: 10.1111/j.1558-5646.1977.tb00979.x
[17]

Zhou J, Lu M, Yu S, Liu Y, Yang J, et al. 2020. In-depth understanding of Camellia oleifera self-incompatibility by comparative transcriptome, proteome and metabolome. International Journal of Molecular Sciences 21(5):1600

doi: 10.3390/ijms21051600
[18]

Zhu W, Li W, Xu Y, Qi J, Xu J, et al. 2016. Research on pollen characteristics and pollination characteristics of Camellia semiserrata. Journal of Central South University of Forestry & Technology 36(9):51−56 (in Chinese)

doi: 10.14067/j.cnki.1673-923x.2016.09.009
[19]

Deng Q, Li J, Gao C, Cheng J, Deng X, et al. 2020. New perspective for evaluating the main Camellia oleifera cultivars in China. Scientific Reportsp 10:20676

doi: 10.1038/s41598-020-77609-7
[20]

Wu L, Li JA, Li Z, Zhang F, Tan X. 2020. Transcriptomic analyses of Camellia oleifera 'Huaxin' leaf reveal candidate genes related to long-term cold stress. International Journal of Molecular Sciencesi 21(3):846

doi: 10.3390/ijms21030846
[21]

Akca Y, Ozguven MM, Altas Z, Uygun T. 2024. A new approach for artificial pollination in walnut trees: AirPoll. Journal of Environmental Management 368:122123

doi: 10.1016/j.jenvman.2024.122123
[22]

Dongariyal A, Dimri DC, Kumar P, Choudhary A, Jat, PK, et al. 2022. Pollen-pistil interaction in response to pollination variants in subtropical Japanese plum (Prunus salicina Lindl.) varieties. Plants 11(22):3081

doi: 10.3390/plants11223081
[23]

Kadri K, Elsafy M, Makhlouf S, Awad MA. 2022. Effect of pollination time, the hour of daytime, pollen storage temperature and duration on pollen viability, germinability, and fruit set of date palm (Phoenix dactylifera L.) cv "Deglet Nour". Saudi Journal of Biological Sciences 29(2):1085−91

doi: 10.1016/j.sjbs.2021.09.062
[24]

Ait Aabd N, Tahiri A, Qessaoui R, Mimouni A, Bouharroud R. 2022. Self- and Cross-Pollination in argane tree and their implications on breeding programs. Cells 11(5):828

doi: 10.3390/cells1105082
[25]

Cheng Q, Xu A, Ren Z, Cheng L, Chen X, et al. 2023. Floral organ characteristics and fruiting rate of 10 main Camellia oleifera varieties in Jiangxi Province. Acta Agriculturae Universitatis Jiangxiensis 45(4):905−14

doi: 10.13836/j.jjau.2023084
[26]

Wei HL, Gao C, Qiu J, Long L, Wang B, et al. 2021. Flowering biological characteristics of Camellia weiningensis Y.K. Li. HortScience 56(11):1331−39

doi: 10.21273/hortsci16024-21
[27]

Cai K, Chen W, Yao H, Mai Z, Luo J, et al. 2021. Effects of application of photosynthetic bacteria and fertilizer on growth and nutrient content in Camellia vietnamensis. Chinese Journal of Tropical Crops 42(09):2610−15

doi: 10.3969/j.issn.1000-2561.2021.09.023
[28]

Hu G. 2020. Study on grafting of Camellia hainanica seedlings and container seedling. Central South University of Forestry and Technology, China. 86 pp. doi: 10.27662/d.cnki.gznlc.2020.000334

[29]

Zhang J, Yuan D, Hu G, Wang D, Luo J, et al. 2019. Impact of different crown grafting methodologies in survival and growth of Camellia oleifera in hainan, china. Journal of Forest and Environment 39(05):483−87

doi: 10.13324/j.Cnki.Jfcf.2019.05.006
[30]

Yuan D, Tan X, Hu Q, Zou F. 2008. Study on Camellia pollen characteristics and the vitality under different storage conditions. Journal of Zhejiang Forestry Science and Technology 28(5):66−69

doi: 10.3969/j.issn.1001-3776.2008.05.017
[31]

Lora J, Herrero M, Hormaza JI. 2012. Pollen performance, cell number, and physiological state in the early-divergent angiosperm Annona cherimola Mill. (Annonaceae) are related to environmental conditions during the final stages of pollen development. Sexual Plant Reproduction 25(3):157−67

doi: 10.1007/s00497-012-0187-2
[32]

Souza EH, Carmello-Guerreiro SM, Souza FVD, Rossi ML, Martinelli AP. 2016. Stigma structure and receptivity in Bromeliaceae. Scientia Horticulturae 203:118−25

doi: 10.1016/j.scienta.2016.03.022
[33]

Karipidis CH, Douma D. 2011. Tomato pollen storage at freeze and cryogenic temperature - effects on viability and fecundity. Acta Hortic 908:257−63

doi: 10.17660/ActaHortic.2011.908.33
[34]

Yuan SC, Chin SW, Lee CY, Chen FC. 2018. Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Botanical Studies 59:1

doi: 10.1186/s40529-017-0218-2
[35]

Li M, Jiang F, Huang L, Wang H, Song W, et al. 2023. Optimization of in vitro germination, viability tests and storage of Paeonia ostii pollen. Plants 12(13):2460

doi: 10.3390/plants12132460
[36]

Wan X, Sun D, Gao C. 2024. Flower opening dynamics, pollen-ovule ratio, stigma receptivity and stigmatic pollen germination (in-vivo) in Chaenomeles speciosa (Sweet) Nakai. Scientific Reports 14:7127

doi: 10.1038/S41598-024-57655-1
[37]

Grantham MA, Ford BA, Worley AC. 2019. Pollination and fruit set in two rewardless slipper orchids and their hybrids (Cypripedium, Orchidaceae): large yellow flowers outperform small white flowers in the northern tall grass prairie. Plant Biology 21(6):997−1007

doi: 10.1111/plb.13026
[38]

Shibata A, Kudo G. 2023. Night and day: contributions of diurnal and nocturnal visitors to pollen dispersal, paternity diversity, and fruit set in an early-blooming shrub, Daphne jezoensis. American Journal of Botany 110(10):e16239

doi: 10.1002/ajb2.16239
[39]

Zeng Y, Li Z, Dai W. 2009. Flowering habits in Camellia oleifera. Journal of Zhejiang A&F University 26(6):802−9 (in Chinese)

doi: 10.3969/j.issn.2095-0756.2009.06.007
[40]

Yang Z, Xie Y, Cao Y, Xu Z, Cun M, et al. 2020. Flowering phenophase of Camellia reticulata. Forest Inventory and Planning 45(5):19−25

doi: 10.3969/j.issn.1671-3168.2020.05.004
[41]

Zhao R, Hu X, Yuan D, Masabni J, Xiong H, et al. 2021. Orthogonal test design for optimizing culture medium for in vitro pollen germination of interspecific oil tea hybrids. Anais da Academia Brasileira de Ciencias 93(2):e20190431

doi: 10.1590/0001-3765202120190431
[42]

Wei J, Pan X. 2021. Changes of mineral elements of Camellia vietnamensis during flower formation and flowering. Guangxi Forestry Science 50(5):496−503 (in Chinese)

doi: 10.19692/j.cnki.gfs.2021.05.003
[43]

Yang Y. 2022. Researches on flowering, fruiting and fruit characteristics of 'changlin' series Camellia oleifera varieties. Thesis. Huazhong Agriculture University, China. 87 pp. doi: 10.27158/d.cnki.ghznu.2022.000591

[44]

Lu Z, Ma J, Ye H, Wu Y, Wei Q, et al. 2024. Floral organs and pollen biological characteristics analysis of 9 Camellia osmantha clones. Molecular Plant Breeding 00:1−11 (in Chinese)

[45]

Liu L, Zhang C, Ji X, Zhang Z, Wang R. 2017. Temporal petal closure benefits reproductive development of Magnolia denudata (Magnoliaceae) in early spring. Frontiers in Plant Science 8:430

doi: 10.3389/fpls.2017.00430
[46]

Hou Q, Zhao X, Pang X, Duan M, Ehmet N, et al. 2022. Why flowers close at noon? A case study of an alpine species Gentianopsis paludosa (Gentianaceae). Ecology and Evolution 12(1):e8490

doi: 10.1002/ece3.8490
[47]

Mamut J, Huang DH, Qiu J, Tan DY. 2023. Stamen curvature and temporal flower closure assure reproductive success in an early-spring-flowering perennial in the cold desert of Middle Asia. Journal of Plant Research 136:33−45

doi: 10.1007/s10265-022-01428-2
[48]

Blarer A, Keasar T, Shmida A. 2002. Possible mechanisms for the formation of flower size preferences by foraging bumblebees. Ethology 108(4):341−51

doi: 10.1046/j.1439-0310.2002.00778.x
[49]

Knauer AC, Schiestl FP. 2015. Bees use honest floral signals as indicators of reward when visiting flowers. Ecology Letters 18:135−43

doi: 10.1111/ele.12386
[50]

Ito K, Suzuki MF, Mochizuki K. 2021. Evolution of honest reward signal in flowers. Proceedings Biological Sciences 288(1943):20202848

doi: 10.1098/rspb.2020.2848
[51]

Abe T. 2006. Threatened pollination systems in native flora of the ogasawara (bonin) Islands. Annals of Botany 98(2):317−34

doi: 10.1093/aob/mcl117
[52]

Boavida LC, Vieira AM, Becker JD, Feijó JA. 2005. Gametophyte interaction and sexual reproduction: how plants make a zygote. The International Journal of Developmental Biology 49(5−6):615−32

doi: 10.1387/ijdb.052023lb
[53]

Bedinger P. 1992. The remarkable biology of pollen. The Plant Cell 4(8):879−87

doi: 10.1105/tpc.4.8.879
[54]

He C, Tan X, Yuan D, Hu Q, Zou F. 2009. Determination of the pollen number and pollen germination rate of seven Camellia species. Journal of Central South University of Forestry & Technology 29(1):74−78 (In Chinese)

doi: 10.3969/j.issn.1673-923X.2009.01.009
[55]

Kelen M, Demirtas I. 2003. Pollen viability, germination capability and pollen production level of some grape varieties (Vitis vinifera L.). Acta Physiologiae Plantarum 25(3):229−33

doi: 10.1007/s11738-003-0002-7
[56]

Baby T, Gilliham M, Tyerman SD, Collins C. 2016. Differential fruitset between grapevine cultivars is related to differences in pollen viability and amine concentration in flowers. Australian Journal of Grape and Wine Research 22(1):149−58

doi: 10.1111/ajgw.12191
[57]

Tello J, Montemayor MI, Forneck A, Ibáñez J. 2018. A new image-based tool for the high throughput phenotyping of pollen viability: evaluation of inter- and intra-cultivar diversity in grapevine. Plant Methods 14(1):3

doi: 10.1186/s13007-017-0267-2
[58]

Huang Z, Zhu J, Mu X, Lin J. 2004. Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Annals of Botany 93(3):295−301

doi: 10.1093/aob/mch044
[59]

Weng Z, Deng Y, Tang F, Zhao L, Zhao L, et al. 2023. Screening and optimisation of in vitro pollen germination medium for sweetpotato (Ipomoea batatas). Plant Methods 19(1):93

doi: 10.1186/s13007-023-01050-w
[60]

Peng HZ, Jin QY, Ye HL, Zhu TJ. 2015. A novel in vitro germination method revealed the influence of environmental variance on the pecan pollen viability. Scientia Horticulturae 181:43−51

doi: 10.1016/j.scienta.2014.10.057
[61]

Alexander LW. 2019. Optimizing pollen germination and pollen viability estimates for Hydrangea macrophylla, Dichroa febrifuga, and their hybrids. Scientia Horticulturae 246:244−50

doi: 10.1016/j.scienta.2018.11.008
[62]

Wani MS, Hamid M, Tantray YR, Gupta RC, Munshi AH, et al. 2020. In vitro pollen germination of Betula utilis, a typical tree line species in Himalayas. South African Journal of Botany 131:214−21

doi: 10.1016/j.sajb.2020.02.025
[63]

dos Santos Ferreira M, Soares TL, Costa EMR, da Silva RL, de Jesus ON, et al. 2021. Optimization of culture medium for the in vitro germination and histochemical analysis of Passiflora spp. pollen grains. Scientia Horticulturae 288:110298

doi: 10.1016/j.scienta.2021.110298
[64]

Wang XN, Chen YZ, Wang R, Chen LS, Peng SF, et al. 2016. Study on pollen viability of Camellia oleifera improved varieties from different specie. Journal of Central South University of Forestry & Technology 36(12):1−5

doi: 10.14067/j.cnki.1673-923x.2016.12.001
[65]

Sulusoglu M, Cavusoglu A. 2014. In vitro pollen viability and pollen germination in cherry laurel (Prunus laurocerasus L.). The Scientific World Journal 2014:657123

doi: 10.1155/2014/657123
[66]

Fu Q, Wang J, Zhang X, Liu C, Liu F. 2015. Study on detection methods for pollen viability of Sinojackia sacocarpa L. Q. Luo. Molecular Plant Breeding 13(5):1146−50

doi: 10.13271/j.mpb.013.001146
[67]

Liu Q, Yang J, Wang X, Zhao Y. 2023. Studies on pollen morphology, pollen vitality and preservation methods of Gleditsia sinensis Lam. (Fabaceae). Forests 14(2):243

doi: 10.3390/f14020243
[68]

Yi W, Law SE, McCoy D, Wetzstein HY. 2006. Stigma development and receptivity in almond (Prunus dulcis). Annals of botany 97(1):57−63

doi: 10.1093/aob/mcj013
[69]

Ferreira JAB, Ledo CAS, Souza FVD, Conceição JQ, Rossi ML, et al. 2021. Stigma structure and receptivity in papaya (Carica papaya L.). Anais da Academia Brasileira de Ciencias 93(1):e20190605

doi: 10.1590/0001-3765202120190605
[70]

Fayos O, Echávarri B, Vallés MP, Mallor C, Garcés-Claver A, et al. 2022. A simple and efficient method for onion pollen preservation: Germination, dehydration, storage conditions, and seed production. Scientia Horticulturae 305:111358

doi: 10.1016/j.scienta.2022.111358
[71]

Zhang Q, Yu R, Sun D, Rahman MM, Xie L, et al. 2018. Comparative transcriptome analysis reveals an efficient mechanism of α-linolenic acid in tree peony seeds. International Journal of Molecular Sciences 20:65

doi: 10.3390/ijms20010065
[72]

Xie L, Hu J, Zhang Q, Sun Q, Zhang Y, et al. 2019. Influence of pollen sources on the expression of FA and TAG biosynthetic pathway genes in seeds of paeonia rockii during the rapid oil accumulation. Scientia Horticulturae 243:477−83

doi: 10.1016/j.scienta.2018.09.002
[73]

Wang L, Wu J, Chen J, Fu D, Zhang C, et al. 2015. A simple pollen collection, dehydration, and long-term storage method for Litchi (Litchi Chinensis Sonn.). Scientia Horticulturae 188:78−83

doi: 10.1016/j.scienta.2015.03.021
[74]

Ćalić D, Milojević J, Belić M, Miletić R, Zdravković-Korać S. 2021. Impact of storage temperature on pollen viability and germinability of four serbian autochthon apple cultivars. Frontiers in Plant Science 12:709231

doi: 10.3389/fpls.2021.709231
[75]

Cai J, Liu X, Liu Y, Zhang Y, Li L, et al. 2015. Observation of flowering and influence factors of pollen germination rate in Camellia oleifera. Guangdong Agricultural Sciences 42(23):72−75+2(in Chinese)

doi: 10.16768/j.issn.1004-874x.2015.23.057
[76]

Jia W, Wang Y, Mi Z, Wang Z, He S, et al. 2022. Optimization of culture medium for in vitro germination and storage conditions of Exochorda racemosa pollen. Frontiers in Plant Science 13:994214

doi: 10.3389/fpls.2022.994214
[77]

Mitchell RJ, Karron JD, Holmquist KG, Bell JM. 2004. The influence of Mimulus ringens floral display size on pollinator visitation patterns. Functional Ecology 18(1):116−24

doi: 10.1111/j.1365-2435.2004.00812.x
[78]

Đorđević M, Vujović T, Cerović R, Glišić I, Milošević N, et al. 2022. In vitro and in vivo performance of plum (Prunus domestica L.) pollen from the anthers stored at distinct temperatures for different periods. Horticulturae 8(7):616

doi: 10.3390/horticulturae8070616
[79]

Taylor ML, Macfarlane TD, Williams JH. 2010. Reproductive ecology of the basal angiosperm Trithuria submersa (Hydatellaceae). Annals of Botany 106(6):909−20

doi: 10.1093/aob/mcq198
[80]

Gao C, Yuan D, Yang Y, Wang B, Liu D, et al. 2015. Pollen tube growth and double fertilization in Camellia oleifera. Journal of the American Society for Horticultural Science 140:12−18

doi: 10.1252/kakoronbunshu.29.576
[81]

Wei W, Wu H, Li X, Wei X, Lu W, et al. 2019. Diversity, daily activity patterns, and pollination effectiveness of the insects visiting Camellia osmantha, C. vietnamensis, and C. oleifera in South China. Insects 10(4):98

doi: 10.3390/insects10040098
[82]

Fu J, Qin Y, Deng Y, Huang D, Zhu Z. 2023. Effect of artificial pollination on fruit setting rate of Camellia oleifera. Journal of Fujian Forestry Science and Technologyl 50:66−70 (in Chinese)

doi: 10.13428/j.cnki.fjlk.2023.01.011
[83]

Li Z, Huang Q, Zheng Y, Zhang Y, Li X, et al. 2022. Identification of the toxic compounds in Camellia oleifera honey and pollen to honey bees (Apis mellifera). Journal of Agricultural and Food Chemistry 70(41):13176−85

doi: 10.1021/acs.jafc.2c04950
[84]

Zhang C, Feng HH, Liu YL, Huang SQ. 2024. Lethal effects of tea-oil Camellia on honeybee larvae due to pollen toxicity. Journal of Integrative Plant Biology 66(11):2313−16

doi: 10.1111/jipb.13731
[85]

Zhao K, Luo A, Zhou Q, Wei W, Liu W, et al. 2023. A chromosome-level genome assembly and evolution analysis of Andrena camellia (Hymenoptera: Andrenidae). Genome Biology and Evolution 15(5):evad080

doi: 10.1093/gbe/evad080