[1]

Kumar P, Sharma N, Sharma S, Mehta N, Verma AK, et al. 2021. In-vitro meat: a promising solution for sustainability of meat sector. Journal of Animal Science and Technology 63:693−724

doi: 10.5187/jast.2021.e85
[2]

Henchion M, Hayes M, Mullen AM, Fenelon M, Tiwari B. 2017. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods 6:53

doi: 10.3390/foods6070053
[3]

Ulrikh E, Babich O, Sukhikh S. 2021. Use of sweet yellow clover (Melilotus officinalis) extract in sheep feeding. E3S Web of Conferences 291:02007

doi: 10.1051/e3sconf/202129102007
[4]

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Rychen G, Aquilina G, Azimonti G, Bampidis V, et al. 2018. Guidance on the assessment of the efficacy of feed additives. EFSA Journal 16:e05274

doi: 10.2903/j.efsa.2018.5274
[5]

Li Q, Xue B, Zhao Y, Wu T, Liu H, et al. 2018. In situ degradation kinetics of 6 roughages and the intestinal digestibility of the rumen undegradable protein. Journal of Animal Science 96:4835−44

doi: 10.1093/jas/sky298
[6]

Liu J, Liu X, Zhang Q, Li S, Sun Y, et al. 2020. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. AMB Express 10:200

doi: 10.1186/s13568-020-01137-w
[7]

Varijakshapanicker P, McKune S, Miller L, Hendrickx S, Balehegn M, et al. 2019. Sustainable livestock systems to improve human health, nutrition, and economic status. Animal Frontiers 9:39−50

doi: 10.1093/af/vfz041
[8]

He Y, Cone JW, Hendriks WH, Dijkstra J. 2021. Corn stover usage and farm profit for sustainable dairy farming in China. Animal Bioscience 34:36−47

doi: 10.5713/ajas.19.0222
[9]

Lamb GC, Black TE, Bischoff KM, Mercadante VR. 2013. The importance of feed efficiency in the cow herd. University of Florida-North Florida Research and Education Center, Marianna, FL. pp. 106−7

[10]

Patience JF, Rossoni-Serão MC, Gutiérrez NA. 2015. A review of feed efficiency in swine: biology and application. Journal of Animal Science and Biotechnology 6:33

doi: 10.1186/s40104-015-0031-2
[11]

Luo K, Jahufer MZ, Wu F, Di H, Zhang D, et al. 2016. Genotypic variation in a breeding population of yellow sweet clover (Melilotus officinalis). Frontiers in Plant Science 7:972

doi: 10.3389/fpls.2016.00972
[12]

Al Sherif EA. 2009. Melilotus indicus (L.) All. , a salt-tolerant wild leguminous herb with high potential for use as a forage crop in salt-affected soils. Flora - Morphology, Distribution, Functional Ecology of Plants 204:737−46

doi: 10.1016/j.flora.2008.10.004
[13]

Çaçan E, Aydın A, Başbağ M. 2015. Determination of quality features of some legume forage crops in Bingöl University Campus. Turkish Journal of Agricultural and Natural Sciences 2:105−11

[14]

Cornara L, Xiao J, Burlando B. 2016. Therapeutic potential of temperate forage legumes: a review. Critical Reviews in Food Science and Nutrition 56:S149−S161

doi: 10.1080/10408398.2015.1038378
[15]

Luo K, Di H, Zhang J, Wang Y, Li Z. 2014. Preliminary evaluation of agronomy and quality traits of nineteen Melilotus accessions. Pratacultural Science 31(11):2125−34 (in Chinese)

doi: 10.11829/j.issn.1001-0629.2013-0455
[16]

Jasicka-Misiak I, Makowicz E, Stanek N. 2017. Polish yellow sweet clover (Melilotus officinalis L.) honey, chromatographic fingerprints, and chemical markers. Molecules 22:138

doi: 10.3390/molecules22010138
[17]

Alonso VA, Pereyra CM, Keller LAM, Dalcero AM, Rosa CAR, et al. 2013. Fungi and mycotoxins in silage: an overview. Journal of Applied Microbiology 115:637−43

doi: 10.1111/jam.12178
[18]

Ersahince A, Kara K. 2017. Nutrient composition and in vitro digestion parameters of Jerusalem artichoke (Helianthus tuberosus L.) herbage at different maturity stages in horse and ruminant. Journal of Animal and Feed Sciences 26(3):213−25

doi: 10.22358/jafs/76477/2017
[19]

Kara K, Ozkaya S, Baytok E, Guclu BK, Aktug E, et al. 2018. Effect of phenological stage on nutrient composition, in vitro fermentation and gas production kinetics of Plantago lanceolata herbage. Veterinární Medicína 63:251−60

doi: 10.17221/2/2017-vetmed
[20]

Kara K. 2021. Nutrient matter, fatty acids, in vitro gas production and digestion of herbage and silage quality of yellow sweet clover (Melilotus officinalis L.) at different phenological stages. Journal of Animal and Feed Sciences 30:128−40

doi: 10.22358/jafs/136401/2021
[21]

Mao SY, Yao W, Wang QJ, Zhu WY, Theodorou MK. 2001. Study of the screening of anaerobic fungi by in vitro fermentation. Journal of Nanjing Agricultural University 11:44−48

[22]

Krishnamoorthy U, Muscato TV, Sniffen CJ, Van Soest PJ. 1982. Nitrogen fractions in selected feedstuffs. Journal of Dairy Science 65:217−25

doi: 10.3168/jds.s0022-0302(82)82180-2
[23]

Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74:3583−97

doi: 10.3168/jds.S0022-0302(91)78551-2
[24]

Jin W, Cheng Y, Zhu W. 2017. The community structure of Methanomassiliicoccales in the rumen of Chinese goats and its response to a high-grain diet. Journal of Animal Science and Biotechnology 8:47

doi: 10.1186/s40104-017-0178-0
[25]

Shen J, Liu Z, Chen Y, Lv P, Zhu W. 2016. Effects of nisin on in vitro fermentation, methanogenesis and functional microbial populations of the rumen. Acta Microbiologica Sinica [Wei Sheng Wu Xue Bao] 56:1348−57

doi: 10.13343/j.cnki.wsxb.20150559
[26]

Mouad LB, Ahmed A, Abdelaziz J, Mohamed A, Mohammed A. 2022. Effect of yellow sweetclover (Melilotus officinalis) hay compared with Lucerne (Medicago sativa) hay on carcass characteristics and meat quality of male goat kids. Journal of Advanced Veterinary and Animal Research 9:617−24

doi: 10.5455/javar.2022.i631
[27]

Bauman D, Perfield J, De Veth M, Lock A. 2003. New perspectives on lipid digestion and metabolism in ruminants. Proc. Cornell Nutrition Conference 65:175−89

[28]

Ge G, Liu Y, Jia Y. 2013. Nutritional value and effect of Melilotus suaveolens hay on feeding Cashmere goat. Acta Agrestia Sinica 21(2):401−5

[29]

Masters DG, Mata G, Revell CK, Davidson RH, Norman HC, et al. 2006. Effects of Prima gland clover (Trifolium glanduliferum Boiss cv. Prima) consumption on sheep production and meat quality. Australian Journal of Experimental Agriculture 46:291−97

doi: 10.1071/ea05036
[30]

Habibi H, Ghahtan N. 2020. Effect of Melilotus officinalis, Oliveria decumbens Vent. and Aloe vera L. on production performance, biochemistry characteristics and meat microbial count in Japanese quail. Iranian Journal of Animal Science Research 12:211−22

doi: 10.22067/ijasr.v12i2.78238
[31]

Hassan AA, Abu Hafsa SH, Elghandour MMMY, Kanth Reddy PR, Monroy JC, et al. 2019. Dietary Supplementation with sodium bentonite and coumarin alleviates the toxicity of aflatoxin B1 in rabbits. Toxicon 171:35−42

doi: 10.1016/j.toxicon.2019.09.014
[32]

Duskaev G, Rakhmatullin S, Kvan O. 2020. Effects of Bacillus cereus and coumarin on growth performance, blood biochemical parameters, and meat quality in broilers. Veterinary World 13:2484−92

doi: 10.14202/vetworld.2020.2484-2492
[33]

Al-Jebory H, Elsagheer M, Salman K, Al-Khilani F, Ibrahim D, et al. 2023. Impact of aqueous extracts of Borage and Melilotus plants on some egg quality traits for laying hen. Archives of Agriculture Sciences Journal 6:73−81

doi: 10.21608/aasj.2023.233553.1155
[34]

Stefanović OD, Tešić JD, Čomić LR. 2015. Melilotus albus and Dorycnium herbaceum extracts as source of phenolic compounds and their antimicrobial, antibiofilm, and antioxidant potentials. Journal of Food and Drug Analysis 23:417−24

doi: 10.1016/j.jfda.2015.01.003
[35]

Liu YT, Gong PH, Xiao FQ, Shao S, Zhao DQ, et al. 2018. Chemical constituents and antioxidant, anti-inflammatory and anti-tumor activities of Melilotus officinalis (Linn.) Pall. Molecules 23:271

doi: 10.3390/molecules23020271
[36]

Al-Snafi AE. 2020. The traditional uses, constituents and pharmacological effects of Ononis spinosa. IOSR Journal of Pharmacy 10:53−59

[37]

Yu AV. 2022. Toxic properties and allelopathic activity of Melilotus officinalis (L.) Pall. Acta Biologica Sibirica 8:89−99

[38]

El Otmani S, Chebli Y, Hornick JL, Cabaraux JF, Chentouf M. 2021. Growth performance, carcass characteristics and meat quality of male goat kids supplemented by alternative feed resources: Olive cake and Cactus cladodes. Animal Feed Science and Technology 272:114746

doi: 10.1016/j.anifeedsci.2020.114746
[39]

Hamdi H, Majdoub-Mathlouthi L, Picard B, Listrat A, Durand D, et al. 2016. Carcass traits, contractile muscle properties and meat quality of grazing and feedlot Barbarine lamb receiving or not olive cake. Small Ruminant Research 145:85−93

doi: 10.1016/j.smallrumres.2016.10.028
[40]

Pleşca-Manea L, Pârvu AE, Pârvu M, Taaˇmaş M, Buia R, et al. 2002. Effects of Melilotus officinalis on acute inflammation. Phytotherapy Research 16:316−19

doi: 10.1002/ptr.875
[41]

Butler M, Ragen D, Westbrook J, Boles J, Layton W, et al. 2016. Effects of confinement finish and cover crop grazed lambs on performance, carcass quality and parasite loads. Thesis. Montana State University: Bozeman, MT, USA.

[42]

Litvinov YN, Semenyutin VV, Manokhin AA. 2022. Study of the biological characteristics of the disintegration of dry matter and yellow melilot protein in the rumen of cows. AIP Conference Proceedings 2467:070027

doi: 10.1063/5.0092440
[43]

Webb EC, Casey NH, Simela L. 2005. Goat meat quality. Small Ruminant Research 60:153−66

doi: 10.1016/j.smallrumres.2005.06.009
[44]

Chen L, Wang P, Cheng X, Yan Z, Wu F, et al. 2022. Recurrent selection of new breeding lines and yield potential, nutrient profile and in vitro rumen characteristics of Melilotus officinalis. Field Crops Research 287:108657

doi: 10.1016/j.fcr.2022.108657
[45]

Ahmed RS, Martens H, Muelling C. 2013. Scanning electron microscopical and morphometrical studies on ruminal papillae of sheep fed on concentrates. Journal of Animal Research 3:111−23

[46]

Alhidary I, Abdelrahman MM, Alyemni AH, Khan RU, Al-Mubarak AH, et al. 2016. Characteristics of rumen in Naemi lamb: morphological changes in response to altered feeding regimen. Acta Histochemica 118:331−37

doi: 10.1016/j.acthis.2016.03.002
[47]

Wang B, Wang D, Wu X, Cai J, Liu M, et al. 2017. Effects of dietary physical or nutritional factors on morphology of rumen papillae and transcriptome changes in lactating dairy cows based on three different forage-based diets. BMC Genomics 18:353

doi: 10.1186/s12864-017-3726-2
[48]

Kyawt YY, Aung M, Xu Y, Sun Z, Zhou Y, et al. 2024. Dynamic changes of rumen microbiota and serum metabolome revealed increases in meat quality and growth performances of sheep fed bio-fermented rice straw. Journal of Animal Science and Biotechnology 15:34

doi: 10.1186/s40104-023-00983-5
[49]

Xu L, Wang Y, Liu J, Zhu W, Mao S. 2018. Morphological adaptation of sheep' s rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis. Journal of Animal Science and Biotechnology 9:32

doi: 10.1186/s40104-018-0247-z
[50]

Kim JN, Henriksen ED, Cann IKO, Mackie RI. 2014. Nitrogen utilization and metabolism in Ruminococcus albus 8. Applied and Environmental Microbiology 80:3095−102

doi: 10.1128/AEM.00029-14
[51]

Chen X, Yan F, Liu T, Zhang Y, Li X, et al. 2022. Ruminal microbiota determines the high-fiber utilization of ruminants: evidence from the ruminal microbiota transplant. Microbiology Spectrum 10:e0044622

doi: 10.1128/spectrum.00446-22
[52]

Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, et al. 2010. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition Research Reviews 23:366−84

doi: 10.1017/S0954422410000247
[53]

Windey K, De Preter V, Verbeke K. 2012. Relevance of protein fermentation to gut health. Molecular Nutrition & Food Research 56:184−96

doi: 10.1002/mnfr.201100542
[54]

Li C, Li W, Yang W, Li H, Liu X, et al. 2012. Isolation and characterisation of an aflatoxin B1-degrading bacterium. Acta Microbiologica Sinicao 52:1129−36 (in Chinese)

[55]

Purushe J, Fouts DE, Morrison M, White BA, Mackie RI, et al. 2010. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microbial Ecology 60:721−29

doi: 10.1007/s00248-010-9692-8
[56]

Helal AA, Shehata SA, Naser AE, Ayyat MS. 2014. Effect of coumarin supplementation to growing rabbit diets on alleviation the toxicity of aflatoxin b1. Zagazig Journal of Agricultural Research 41:803−13

[57]

Kintl A, Huňady I, Holátko J, Vítěz T, Hammerschmiedt T, et al. 2022. Using the mixed culture of fodder mallow (Malva verticillata L.) and white sweet clover (Melilotus albus Medik.) for methane production. Fermentation 8:94

doi: 10.3390/fermentation8030094
[58]

Zeng Y, Zeng D, Ni X, Zhu H, Jian P, et al. 2017. Microbial community compositions in the gastrointestinal tract of Chinese Mongolian sheep using Illumina MiSeq sequencing revealed high microbial diversity. AMB Express 7:75

doi: 10.1186/s13568-017-0378-1
[59]

Grice EA, Kong HH, Conlan S, Deming CB, Davis J, et al. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:1190−92

doi: 10.1126/science.1171700
[60]

An X, Zhang L, Luo J, Zhao S, Jiao T. 2020. Effects of oat hay content in diets on nutrient metabolism and the rumen microflora in sheep. Animals 10:2341

doi: 10.3390/ani10122341
[61]

Jacobson LH, Nagle TA, Gregory NG, Graham Bell R, Le Roux G, et al. 2002. Effect of feeding pasture-finished cattle different conserved forages on Escherichia coli in the rumen and faeces. Meat Science 62:93−106

doi: 10.1016/S0309-1740(01)00233-9
[62]

Cordova-Torres AV, Costa RG, Araújo Filho JT, Medeiros AN, Andrade-Montemayor HM. 2020. Meat and milk quality of sheep and goat fed with Cactus pear. Journal of the Professional Association for Cactus Development 19:11−31

doi: 10.56890/jpacd.v19i.40
[63]

Joven M, Pintos E, Latorre MA, Suárez-Belloch J, Guada JA, et al. 2014. Effect of replacing barley by increasing levels of olive cake in the diet of finishing pigs: Growth performances, digestibility, carcass, meat and fat quality. Animal Feed Science and Technology 197:185−93

doi: 10.1016/j.anifeedsci.2014.08.007
[64]

Dierking RM, Kallenbach RL, Roberts CA. 2010. Fatty acid profiles of orchardgrass, tall fescue, perennial ryegrass, and alfalfa. Crop Science 50:391−402

doi: 10.2135/cropsci2008.12.0741
[65]

Glasser F, Doreau M, Maxin G, Baumont R. 2013. Fat and fatty acid content and composition of forages: a meta-analysis. Animal Feed Science and Technology 185:19−34

doi: 10.1016/j.anifeedsci.2013.06.010
[66]

Van Ranst G, Fievez V, Vandewalle M, De Riek J, Van Bockstaele E. 2009. Influence of herbage species, cultivar and cutting date on fatty acid composition of herbage and lipid metabolism during ensiling. Grass and Forage Science 64:196−207

doi: 10.1111/j.1365-2494.2009.00686.x
[67]

Kamal M, Kishk WH, Khalil HA, Abdel-Khalek AM, Ayoub MA, et al. 2023. Effect of dietary chitosan supplementation on productive and physiological performance parameters of growing New Zealand white rabbits. International Journal of Biological Macromolecules 230:123166

doi: 10.1016/j.ijbiomac.2023.123166