[1]

Yang JJ, Yu D, Wen W, Shu XO, Saito E, et al. 2019. Tobacco smoking and mortality in Asia: a pooled meta-analysis. JAMA Network Open 2:e191474

doi: 10.1001/jamanetworkopen.2019.1474
[2]

Le Foll B, Piper ME, Fowler CD, Tonstad S, Bierut L, et al. 2022. Tobacco and nicotine use. Nature Reviews Disease Primers 8:19

doi: 10.1038/s41572-022-00346-w
[3]

Regner MF, Tregellas J, Kluger B, Wylie K, Gowin JL, et al. 2019. The insula in nicotine use disorder: Functional neuroimaging and implications for neuromodulation. Neuroscience & Biobehavioral Reviews 103:414−24

doi: 10.1016/j.neubiorev.2019.06.002
[4]

Uddin LQ, Nomi JS, Hébert-Seropian B, Ghaziri J, Boucher O. 2017. Structure and function of the human insula. Journal of Clinical Neurophysiology 34:300−6

doi: 10.1097/WNP.0000000000000377
[5]

Abdolahi A, Williams GC, van Wijngaarden E. 2019. Implications of insular cortex laterality for treatment of nicotine addiction. Drug and Alcohol Dependence 201:178−81

doi: 10.1016/j.drugalcdep.2019.04.017
[6]

Bellini BB, Scholz JR, Abe TO, Arnaut D, Tonstad S, et al. 2024. Does deep TMS really works for smoking cessation? A prospective, double blind, randomized, sham controlled study. Progress in Neuro-Psychopharmacology and Biological Psychiatr 132:110997

doi: 10.1016/j.pnpbp.2024.110997
[7]

Ibrahim C, Rubin-Kahana DS, Pushparaj A, Musiol M, Blumberger DM, et al. 2019. The insula: a brain stimulation target for the treatment of addiction. Frontiers in Pharmacology 10:720

doi: 10.3389/fphar.2019.00720
[8]

Chen Y, Chaudhary S, Wang W, Li CR. 2022. Gray matter volumes of the insula and anterior cingulate cortex and their dysfunctional roles in cigarette smoking. Addiction Neuroscience 1:100003

doi: 10.1016/j.addicn.2021.100003
[9]

Bu L, Yu D, Su S, Ma Y, von Deneen KM, et al. 2016. Functional connectivity abnormalities of brain regions with structural deficits in young adult male smokers. Frontiers in Human Neuroscience 10:494

doi: 10.3389/fnhum.2016.00494
[10]

Hett K, Lyu I, Trujillo P, Lopez AM, Aumann M, et al. 2021. Anatomical texture patterns identify cerebellar distinctions between essential tremor and Parkinson's disease. Human Brain Mapping 42:2322−31

doi: 10.1002/hbm.25331
[11]

Betrouni N, Moreau C, Rolland AS, Carrière N, Chupin M, et al. 2021. Texture-based markers from structural imaging correlate with motor handicap in Parkinson's disease. Scientific Reports 11:2724

doi: 10.1038/s41598-021-81209-4
[12]

Lin F, Wu G, Zhu L, Lei H. 2019. Region-Specific Changes of Insular Cortical Thickness in Heavy Smokers. Frontiers in Human Neuroscience 13:265

doi: 10.3389/fnhum.2019.00265
[13]

Perez Diaz M, Pochon JB, Ghahremani DG, Dean AC, Faulkner P, et al. 2021. Sex Differences in the Association of Cigarette Craving With Insula Structure. The International Journal of Neuropsychopharmacology 24:624−33

doi: 10.1093/ijnp/pyab015
[14]

Stamoulou E, Spanakis C, Manikis GC, Karanasiou G, Grigoriadis G, et al. 2022. Harmonization strategies in multicenter MRI-based radiomics. Journal of Imaging 8:303

doi: 10.3390/jimaging8110303g
[15]

Castellano G, Bonilha L, Li LM, Cendes F. 2004. Texture analysis of medical images. Clinical Radiology 59:1061−69

doi: 10.1016/j.crad.2004.07.008
[16]

Haneberg AG, Pierre K, Winter-Reinhold E, Hochhegger B, Peters KR, et al. 2023. Introduction to radiomics and artificial intelligence: a primer for radiologists. Seminars in Roentgenology 58:152−57

doi: 10.1053/j.ro.2023.02.002
[17]

Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, et al. 2021. A deep look into radiomics. La Radiologia Medica 126:1296−311

doi: 10.1007/s11547-021-01389-x
[18]

Gillies RJ, Kinahan PE, Hricak H. 2016. Radiomics: images are more than pictures, they are data. Radiology 278:563−77

doi: 10.1148/radiol.2015151169
[19]

Suoranta S, Holli-Helenius K, Koskenkorva P, Niskanen E, Könönen M, et al. 2013. 3D texture analysis reveals imperceptible MRI textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1. PLoS One 8:e69905

doi: 10.1371/journal.pone.0069905
[20]

Zhang J, Tong L, Wang L, Li N. 2008. Texture analysis of multiple sclerosis: a comparative study. Magnetic Resonance Imaging 26:1160−66

doi: 10.1016/j.mri.2008.01.016
[21]

Jiang J, Wang M, Alberts I, Sun X, Li T, et al. 2022. Using radiomics-based modelling to predict individual progression from mild cognitive impairment to Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging 49:2163−73

doi: 10.1007/s00259-022-05687-y
[22]

Péran P, Cherubini A, Assogna F, Piras F, Quattrocchi C, et al. 2010. Magnetic resonance imaging markers of Parkinson's disease nigrostriatal signature. Brain 133:3423−33

doi: 10.1093/brain/awq212
[23]

Li C, Li W, Liu C, Zheng H, Cai J, Wang S. 2022. Artificial intelligence in multiparametric magnetic resonance imaging: a review. Medical Physicss 49:e1024−e1054

doi: 10.1002/mp.15936
[24]

Li Y, Yuan K, Guan Y, Cheng J, Bi Y, et al. 2017. The implication of salience network abnormalities in young male adult smokers. Brain Imaging and Behavior 11:943−53

doi: 10.1007/s11682-016-9568-8
[25]

Hutton C, Draganski B, Ashburner J, Weiskopf N. 2009. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48:371−80

doi: 10.1016/j.neuroimage.2009.06.043
[26]

Abbasian Ardakani A, Bureau NJ, Ciaccio EJ, Acharya UR. 2022. Interpretation of radiomics features - a pictorial review. Computer Methods and Programs in Biomedicine 215:106609

doi: 10.1016/j.cmpb.2021.106609
[27]

Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. 1991. The Fagerström test for nicotine dependence: a revision of the Fagerström Tolerance Questionnaire. British Journal of Addiction 86:1119−27

doi: 10.1111/j.1360-0443.1991.tb01879.x
[28]

Peng P, Wang Z, Jiang T, Chu S, Wang S, et al. 2017. Brain-volume changes in young and middle-aged smokers: a DARTEL-based voxel-based morphometry study. The Clinical Respiratory Journal 11:621−31

doi: 10.1111/crj.12393
[29]

Kavzoglu T, Colkesen I. 2009. A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation 11:352−59

doi: 10.1016/j.jag.2009.06.002
[30]

Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, et al. 2012. Radiomics: the process and the challenges. Magnetic Resonance 30:1234−48

doi: 10.1016/j.mri.2012.06.010
[31]

Yan CG, Wang XD, Zuo XN, Zang YF. 2016. DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14:339−51

doi: 10.1007/s12021-016-9299-4
[32]

Wang C, Huang P, Shen Z, Qian W, Li K, et al. 2019. Gray matter volumes of insular subregions are not correlated with smoking cessation outcomes but negatively correlated with nicotine dependence severity in chronic smokers. Neuroscience Letters 696:7−12

doi: 10.1016/j.neulet.2018.12.013
[33]

Conti AA, Baldacchino AM. 2023. Early-onset smoking theory of compulsivity development: a neurocognitive model for the development of compulsive tobacco smoking. Frontiers in Psychiatry 14:1209277

doi: 10.3389/fpsyt.2023.1209277
[34]

Yang Z, Zhang Y, Cheng J, Zheng R. 2020. Meta-analysis of brain gray matter changes in chronic smokers. European Journal of Radiology 132:109300

doi: 10.1016/j.ejrad.2020.109300
[35]

Chen Y, Li CR. 2023. Overnight abstinence, Ventrostriatal-insular connectivity, and tridimensional personality traits in cigarette smokers. Journal of Integrative Neuroscience 22:66

doi: 10.31083/j.jin2203066
[36]

Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, et al. 2012. Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer 48:441−46

doi: 10.1016/j.ejca.2011.11.036
[37]

Tozer DJ, Zeestraten E, Lawrence AJ, Barrick TR, Markus HS. 2018. Texture Analysis of T1-Weighted and Fluid-Attenuated Inversion Recovery Images Detects Abnormalities That Correlate With Cognitive Decline in Small Vessel Disease. Stroke 49:1656−61

doi: 10.1161/STROKEAHA.117.019970
[38]

Bi Y, Yuan K, Guan Y, Cheng J, Zhang Y, et al. 2017. Altered resting state functional connectivity of anterior insula in young smokers. Brain Imaging and Behavior 11:155−65

doi: 10.1007/s11682-016-9511-z
[39]

Garrison KA, Sinha R, Lacadie CM, Scheinost D, Jastreboff AM, et al. 2016. Functional connectivity during exposure to favorite-food, stress, and neutral-relaxing imagery differs between smokers and nonsmokers. Nicotine & Tobacco Research 18:1820−29

doi: 10.1093/ntr/ntw088
[40]

Wetherill RR, Rao H, Hager N, Wang J, Franklin TR, et al. 2019. Classifying and characterizing nicotine use disorder with high accuracy using machine learning and resting-state fMRI. Addiction Biology 24:811−21

doi: 10.1111/adb.12644
[41]

Fan C, Zha R, Liu Y, Wei Z, Wang Y, et al. 2023. Altered white matter functional network in nicotine addiction. Psychiatry Research 321:115073

doi: 10.1016/j.psychres.2023.115073