| [1] |
The United Nations. n.d. The 17 Goals. https://sdgs.un.org/goals |
| [2] |
Shorinola O, Marks R, Emmrich P, Jones C, Odeny D, Chapman MA. 2024. Integrative and inclusive genomics to promote the use of underutilised crops. Nature Communications 15:320 |
| [3] |
Chang Y, Liu H, Liu M, Liao X, Sahu SK, et al. 2019. The draft genomes of five agriculturally important African orphan crops. Gigascience 8:giy152 doi: 10.1093/gigascience/giy152 |
| [4] |
Timsina J, Dutta S, Devkota KP, Chakraborty S, Neupane RK, et al. 2021. Improved nutrient management in cereals using Nutrient Expert and machine learning tools: Productivity, profitability and nutrient use efficiency. Agricultural Systems 192:103181 doi: 10.1016/j.agsy.2021.103181 |
| [5] |
Burke MB, Lobell DB, Guarino L. 2009. Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Global Environmental Change 19:317−25 doi: 10.1016/j.gloenvcha.2009.04.003 |
| [6] |
Hake S, Ross-Ibarra J. 2015. Genetic, evolutionary and plant breeding insights from the domestication of maize. eLife 4:e05861 doi: 10.7554/eLife.05861 |
| [7] |
Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, et al. 2019. Climate change has likely already affected global food production. PLoS One 14:e0217148 doi: 10.1371/journal.pone.0217148 |
| [8] |
Ye CY, Fan L. 2021. Orphan crops and their wild relatives in the genomic era. Molecular Plant 14:27−39 doi: 10.1016/j.molp.2020.12.013 |
| [9] |
MacNish TR, Danilevicz MF, Bayer PE, Bestry MS, Edwards D. 2025. Application of machine learning and genomics for orphan crop improvement. Nature Communications 16:982 doi: 10.1038/s41467-025-56330-x |
| [10] |
Padulosi S, Amaya K, Jäger M, Gotor E, Rojas W, et al. 2014. A holistic approach to enhance the use of neglected and underutilized species: the case of andean grains in Bolivia and Peru. Sustainability 6:1283−312 doi: 10.3390/su6031283 |
| [11] |
Hunter D, Borelli T, Beltrame DMO, Oliveira CNS, Coradin L, et al. 2019. The potential of neglected and underutilized species for improving diets and nutrition. Planta 250:709−29 doi: 10.1007/s00425-019-03169-4 |
| [12] |
xxxx. 2024. Efficient genetic improvement of orphan crops cannot follow the old path. Nature Communications 15:321 doi: 10.1038/s41467-023-44458-7 |
| [13] |
Office of Assistant Director-General (Natural Resources Management and Environment Department), Food and Agriculture Organization of the United Nation. 1996. Global Plan Action for the Conservation and Sustainable Utilization of Plant Genetic Resources for Food and Agriculture. https://openknowledge.fao.org/handle/20.500.14283/aj631e |
| [14] |
Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations. 2011. Second Global Plan of Action for Plant Genetic Resources for Food and Agriculture. www.fao.org/4/i2624e/i2624e00.htm |
| [15] |
Gale MD, Devos KM. 1998. Plant comparative genetics after 10 years. Science 282:656−59 doi: 10.1126/science.282.5389.656 |
| [16] |
Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR. 2009. Orphan legume crops enter the genomics era! Current Opinion in Plant Biology 12:202−10 doi: 10.1016/j.pbi.2008.12.004 |
| [17] |
Armstead I, Huang L, Ravagnani A, Robson P, Ougham H. 2009. Bioinformatics in the orphan crops. Briefings in Bioinformatics 10:645−53 doi: 10.1093/bib/bbp036 |
| [18] |
Tadele Z, Bartels D. 2019. Promoting orphan crops research and development. Planta 250:675−76 doi: 10.1007/s00425-019-03235-x |
| [19] |
Diao X, Jia G. 2017. Origin and domestication of foxtail millet. In Genetics and Genomics of Setaria, ed. Doust A, Diao X. Cham: Springer International Publishing. pp. 61-72. doi: 10.1007/978-3-319-45105-3_4 |
| [20] |
He Q, Tang S, Zhi H, Chen J, Zhang J, et al. 2023. A graph-based genome and pan-genome variation of the model plant Setaria. Nature Genetics 55:1232−42 doi: 10.1038/s41588-023-01423-w |
| [21] |
FAO. 2013. Quinoa: an ancient crop to contribute to world food security. Report. Regional Office for Latin America and the Caribbean. www.fao.org/quinoa-2013/publications/detail/en/item/202738/icode |
| [22] |
Varshney RK, Roorkiwal M, Sun S, Bajaj P, Chitikineni A, et al. 2021. A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599:622−27 doi: 10.1038/s41586-021-04066-1 |
| [23] |
Khan AW, Garg V, Sun S, Gupta S, Dudchenko O, et al. 2024. Cicer super-pangenome provides insights into species evolution and agronomic trait loci for crop improvement in chickpea. Nature Genetics 56:1225−34 doi: 10.1038/s41588-024-01760-4 |
| [24] |
Epping J, Laibach N. 2020. An underutilized orphan tuber crop-Chinese yam : a review. Planta 252:58 doi: 10.1007/s00425-020-03458-3 |
| [25] |
Liu J, Wang M, Zhao Y, Shen D, Yang Q, et al. 2024. YamOmics: A comprehensive data resource on yam multi-omics. bioRxiv Preprint doi: 10.1101/2024.01.23.576833 |
| [26] |
Kasule F, Kakeeto R, Tippe D, Okinong D, Aru J, et al. 2023. Insights into finger millet production: constraints, opportunities, and implications for improving the crop in Uganda. Journal of Plant Breeding and Crop Science 15:143−64 |
| [27] |
Nagaraja TE, Gazala Parveen S, Meenakshi J, Murtujasab S, Chetana, et al. 2024. Panorama of small millets breeding: a review. Plant Breeding 143:810−27 doi: 10.1111/pbr.13211 |
| [28] |
Long R, Zhang F, Zhang Z, Li M, Chen L, et al. 2022. Genome assembly of alfalfa cultivar Zhongmu-4 and identification of SNPs associated with agronomic traits. Genomics Proteomics & Bioinformatics 20:14−28 doi: 10.1016/j.gpb.2022.01.002 |
| [29] |
Basha SJ, Lakshmi VJ, Reddy AT, Kamakshi N, Ahammed SK. 2018. Estimate of growth and yield parameters of chickpea (Cicer arietinum L.) cultivars amenable to mechanical harvesting. Journal of Pharmacognosy and Phytochemistry 7:2089−91 |
| [30] |
Radhakrishnan T, Bera SK, Misra JB. 2020. Girnar-4 and Girnar-5: the first ever indigenous high-oleic groundnut varieties. ICAR-Directorate of Groundnut Research. doi: 10.13140/RG.2.2.27314.43200 |
| [31] |
Neela S, Fanta SW. 2019. Review on nutritional composition of orange-fleshed sweet potato and its role in management of vitamin A deficiency. Food Science & Nutrition 7:1920−45 doi: 10.1002/fsn3.1063 |
| [32] |
Girard AB, Brouwer R, Faerber E, Grant FK, Low JW. 2021. Orange-fleshed sweetpotato: Strategies and lessons learned for achieving food security and health at scale in Sub-Saharan Africa. Open Agriculture 6:511−36 doi: 10.1515/opag-2021-0034 |
| [33] |
Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, et al. 2017. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology 35:969−76 doi: 10.1038/nbt.3943 |
| [34] |
Norden AJ, Gorbet DW, Knauft DA, Young CT. 1987. Variability in Oil Quality Among Peanut Genotypes in the Florida Breeding Program1. Peanut Science 14:7−11 doi: 10.3146/i0095-3679-14-1-3 |
| [35] |
Moore KM, Knauft DA. 1989. The Inheritance of high oleic acid in peanut. Journal of Heredity 80:252−53 doi: 10.1093/oxfordjournals.jhered.a110845 |
| [36] |
Yu S, Pan L, Yang Q, Min P, Ren Z, et al. 2008. Comparison of the Δ12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. Journal of Genetics and Genomics 35:679−85 doi: 10.1016/S1673-8527(08)60090-9 |
| [37] |
Chu Y, Holbrook CC, Ozias-Akins P. 2009. Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Science 49:2029−36 doi: 10.2135/cropsci2009.01.0021 |
| [38] |
Wang ML, Tonnis B, An YC, Pinnow D, Tishchenko V, et al. 2015. Newly identified natural high-oleate mutant from Arachis hypogaea L. subsp. hypogaea. Molecular Breeding 35:186 doi: 10.1007/s11032-015-0377-3 |
| [39] |
Xue Y, Yin N, Chen B, Liao F, Win AN, et al. 2017. Molecular cloning and expression analysis of two FAD2 genes from chia (Salvia hispanica). Acta Physiologiae Plantarum 39:95 doi: 10.1007/s11738-017-2390-0 |
| [40] |
Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, et al. 2000. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology 18:1307−10 doi: 10.1038/82436 |
| [41] |
Broekaert WF, Mariën W, Terras FR, De Bolle MF, Proost P, et al. 1992. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31:4308−14 doi: 10.1021/bi00132a023 |
| [42] |
Chen Y, Guo H, Jiang Y, Li C, Zhao W, et al. 2003. Disease-tolerance of transgenic tobacco plants expressing Ah-AMP gene of Amaranthus hypochondriacus. Progress in Natural Science 13:362−66 doi: 10.1080/10020070312331343680 |
| [43] |
Chen HJ, Su CT, Lin CH, Huang GJ, Lin YH. 2010. Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Journal of Plant Physiology 167:838−47 doi: 10.1016/j.jplph.2010.01.005 |
| [44] |
Chen H, Liu L, Wang L, Wang S, Cheng X. 2016. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. Journal of Plant Research 129:263−73 doi: 10.1007/s10265-015-0773-0 |
| [45] |
Babitha KC, Vemanna RS, Nataraja KN, Udayakumar M. 2015. Overexpression of EcbHLH57 transcription factor from Eleusine coracana L. in tobacco confers tolerance to salt, oxidative and drought stress. PLoS One 10:e0137098 doi: 10.1371/journal.pone.0137098 |
| [46] |
Tang L, Cai H, Ji W, Luo X, Wang Z, et al. 2013. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry 71:22−30 doi: 10.1016/j.plaphy.2013.06.024 |
| [47] |
Kobayashi Y, Sugita R, Fujita M, Yasui Y, Murata Y, et al. 2024. CqHKT1 and CqSOS1 mediate genotype-dependent Na+ exclusion under high salt stress in quinoa. bioRxiv Preprint doi: 10.1101/2024.08.05.606677 |
| [48] |
Zhang H, Yu F, Xie P, Sun S, Qiao X, et al. 2023. A Gγ protein regulates alkaline sensitivity in crops. Science 379:eade8416 doi: 10.1126/science.ade8416 |
| [49] |
Liu J, Jiang C, Kang L, Zhang H, Song Y, et al. 2020. Over-expression of a 14-3-3 protein from foxtail millet improves plant tolerance to salinity stress in Arabidopsis thaliana. Frontiers in Plant Science 11:449 doi: 10.3389/fpls.2020.00449 |
| [50] |
Zhang Y, Xiao T, Yi F, Yu J. 2023. SimiR396d targets SiGRF1 to regulate drought tolerance and root growth in foxtail millet. Plant Science 326:111492 doi: 10.1016/j.plantsci.2022.111492 |
| [51] |
Qi X, Li MW, Xie M, Liu X, Ni M, et al. 2014. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications 5:4340 doi: 10.1038/ncomms5340 |
| [52] |
Zhang D, Zhang Z, Li C, Xing Y, Luo Y, et al. 2022. Overexpression of MsRCI2D and MsRCI2E enhances salt tolerance in alfalfa (Medicago sativa L.) by stabilizing antioxidant activity and regulating ion homeostasis. International Journal of Molecular Sciences 23 |
| [53] |
Kong W, Huang H, Du W, Jiang Z, Luo Y, et al. 2024. Overexpression of MsNIP2 improves salinity tolerance in Medicago sativa. Journal of Plant Physiology 295:154207 |
| [54] |
Lin S, Yang J, Liu Y, Zhang W. 2024. MsSPL12 is a positive regulator in alfalfa (Medicago sativa L.) salt tolerance. Plant Cell Reports 43:101 doi: 10.1007/s00299-024-03175-1 |
| [55] |
Chung E, Cho CW, So HA, Kang JS, Chung YS, et al. 2013. Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in arabidopsis. PLoS One 8:e66056 doi: 10.1371/journal.pone.0066056 |
| [56] |
Chen Z, Lu HH, Hua S, Lin KH, Chen N, et al. 2019. Cloning and overexpression of the ascorbate peroxidase gene from the yam (Dioscorea alata) enhances chilling and flood tolerance in transgenic Arabidopsis. Journal of Plant Research 132:857−66 doi: 10.1007/s10265-019-01136-4 |
| [57] |
Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK. 2010. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports 37:1125−35 doi: 10.1007/s11033-009-9885-8 |
| [58] |
Bull SE, Seung D, Chanez C, Mehta D, Kuon JE, et al. 2018. Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. Science Advances 4:eaat6086 doi: 10.1126/sciadv.aat6086 |
| [59] |
Luo S, Ma Q, Zhong Y, Jing J, Wei Z, et al. 2022. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava. Plant Molecular Biology 108:429−42 doi: 10.1007/s11103-021-01215-y |
| [60] |
Lu X, Wang Y, Pan M, Chen S, Li R, et al. 2025. Mutation of MeMinD increased amyloplast size with a changed starch granule morphologenesis and structures in cassava storage roots. Carbohydrate Polymers 348:122884 doi: 10.1016/j.carbpol.2024.122884 |
| [61] |
Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, et al. 2019. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal 17:421−34 doi: 10.1111/pbi.12987 |
| [62] |
Wang Y, Geng M, Pan R, Zhang T, Lu X, et al. 2024. Editing of the MeSWEET10a promoter yields bacterial blight resistance in cassava cultivar SC8. Molecular Plant Pathology 25:e70010 doi: 10.1111/mpp.70010 |
| [63] |
Gomez MA, Berkoff KC, Gill BK, Iavarone AT, Lieberman SE, et al. 2022. CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production. Frontiers in Plant Science 13:1079254 doi: 10.3389/fpls.2022.1079254 |
| [64] |
Wang H, Wu Y, Zhang Y, Yang J, Fan W, et al. 2019. CRISPR/Cas9-based mutagenesis of starch biosynthetic genes in sweet potato (Ipomoea batatas) for the improvement of starch quality. International Journal of Molecular Sciences 20:4702 doi: 10.3390/ijms20194702 |
| [65] |
Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, et al. 2018. Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants 4:766−70 doi: 10.1038/s41477-018-0259-x |
| [66] |
Mamidi S, Healey A, Huang P, Grimwood J, Jenkins J, et al. 2020. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nature Biotechnology 38:1203−10 doi: 10.1038/s41587-020-0681-2 |
| [67] |
Dong L, Li S, Wang L, Su T, Zhang C, et al. 2023. The genetic basis of high-latitude adaptation in wild soybean. Current Biology 33:252−262.e4 doi: 10.1016/j.cub.2022.11.061 |
| [68] |
Bai Y, Liu S, Bai Y, Xu Z, Zhao H, et al. 2024. Application of CRISPR/Cas12i. 3 for targeted mutagenesis in broomcorn millet (Panicum miliaceum L.). Journal of Integrative Plant Biology 66:1544−47 doi: 10.1111/jipb.13669 |
| [69] |
Zhang D, Tang S, Xie P, Yang D, Wu Y, et al. 2022. Creation of fragrant sorghum by CRISPR/Cas9. Journal of Integrative Plant Biology 64:961−64 doi: 10.1111/jipb.13232 |
| [70] |
Shi J, Mei C, Ge F, Hu Q, Ban X, et al. 2025. Resistance to Striga parasitism through reduction of strigolactone exudation. Cell 188:1955−1966.e13 doi: 10.1016/j.cell.2025.01.022 |
| [71] |
Yu S, Wang Y, Li T, Shi H, Kong D, et al. 2024. Chromosome-scale assembly and gene editing of Solanum americanum genome reveals the basis for thermotolerance and fruit anthocyanin composition. Theoretical and Applied Genetics 137:15 doi: 10.1007/s00122-023-04523-7 |
| [72] |
Benoit M, Jenike KM, Satterlee JW, Ramakrishnan S, Gentile I, et al. 2025. Solanum pan-genetics reveals paralogues as contingencies in crop engineering. Nature |
| [73] |
Kumar B, Singh AK, Bahuguna RN, Pareek A, Singla-Pareek SL. 2023. Orphan crops: a genetic treasure trove for hunting stress tolerance genes. Food and Energy Security 12:e436 doi: 10.1002/fes3.436 |
| [74] |
Chapman MA, He Y, Zhou M. 2022. Beyond a reference genome: pangenomes and population genomics of underutilized and orphan crops for future food and nutrition security. New Phytologist 234:1583−97 doi: 10.1111/nph.18021 |
| [75] |
Hu H, Zhao J, Thomas WJW, Batley J, Edwards D. 2025. The role of pangenomics in orphan crop improvement. Nature Communications 16:118 doi: 10.1038/s41467-024-55260-4 |
| [76] |
Shen C, Du H, Chen Z, Lu H, Zhu F, et al. 2020. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant 13:1250−61 doi: 10.1016/j.molp.2020.07.003 |
| [77] |
Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD, et al. 2019. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics 51:857−64 doi: 10.1038/s41588-019-0401-3 |
| [78] |
Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, et al. 2013. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics 45:957−61 doi: 10.1038/ng.2673 |
| [79] |
Njaci I, Waweru B, Kamal N, Muktar MS, Fisher D, et al. 2023. Chromosome-level genome assembly and population genomic resource to accelerate orphan crop lablab breeding. Nature Communications 14:1915 doi: 10.1038/s41467-023-37489-7 |
| [80] |
Yan H, Sun M, Zhang Z, Jin Y, Zhang A, et al. 2023. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics 55:507−18 doi: 10.1038/s41588-023-01302-4 |
| [81] |
Tao Y, Luo H, Xu J, Cruickshank A, Zhao X, et al. 2021. Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants 7:766−73 doi: 10.1038/s41477-021-00925-x |
| [82] |
Yang T, Liu R, Luo Y, Hu S, Wang D, et al. 2022. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nature Genetics 54:1553−63 doi: 10.1038/s41588-022-01172-2 |
| [83] |
Wu X, Hu Z, Zhang Y, Li M, Liao N, et al. 2024. Differential selection of yield and quality traits has shaped genomic signatures of cowpea domestication and improvement. Nature Genetics 56:992−1005 doi: 10.1038/s41588-024-01722-w |
| [84] |
Alene AD, Abdoulaye T, Rusike J, Labarta R, Creamer B, et al. 2018. Identifying crop research priorities based on potential economic and poverty reduction impacts: The case of cassava in Africa, Asia, and Latin America. PLoS One 13:e0201803 doi: 10.1371/journal.pone.0201803 |
| [85] |
Yssel AEJ, Kao SM, Van de Peer Y, Sterck L. 2019. ORCAE-AOCC: a centralized portal for the annotation of African orphan crop genomes. Genes (Basel) 10:950 doi: 10.3390/genes10120950 |
| [86] |
Sahu SK, Liu M, Yssel A, Kariba R, Muthemba S, et al. 2019. Draft genomes of two artocarpus plants, jackfruit (A. heterophyllus) and Breadfruit (A. altilis). Genes 11:27 doi: 10.3390/genes11010027 |
| [87] |
Bredeson JV, Lyons JB, Oniyinde IO, Okereke NR, Kolade O, et al. 2022. Chromosome evolution and the genetic basis of agronomically important traits in greater yam. Nature Communications 13:2001 doi: 10.1038/s41467-022-29114-w |
| [88] |
Song B, Song Y, Fu Y, Kizito EB, Kamenya SN, et al. 2019. Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome. Gigascience 8:giz115 doi: 10.1093/gigascience/giz115 |
| [89] |
Hale I, Ma X, Melo ATO, Padi FK, Hendre PS, et al. 2021. Genomic resources to guide improvement of the shea tree. Frontiers in Plant Science 12:720670 doi: 10.3389/fpls.2021.720670 |
| [90] |
Thiele G, Friedmann M, Campos H, Polar V, Bentley JW. 2022. Root, Tuber and Banana Food System Innovations: value creation for inclusive outcomes. Cham: Springer. doi: 10.1007/978-3-030-92022-7 |
| [91] |
Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, et al. 2011. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology 30:83−89 doi: 10.1038/nbt.2022 |
| [92] |
Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, et al. 2012. Reference genome sequence of the model plant Setaria. Nature Biotechnology 30:555−61 doi: 10.1038/nbt.2196 |
| [93] |
Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, et al. 2012. The cassava genome: current progress, future directions. Tropical Plant Biology 5:88−94 doi: 10.1007/s12042-011-9088-z |
| [94] |
Varshney RK, Song C, Saxena RK, Azam S, Yu S, et al. 2013. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology 31:240−46 doi: 10.1038/nbt.2491 |
| [95] |
Cannarozzi G, Plaza-Wüthrich S, Esfeld K, Larti S, Wilson YS, et al. 2014. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics 15:581 doi: 10.1186/1471-2164-15-581 |
| [96] |
Wang W, Feng B, Xiao J, Xia Z, Zhou X, et al. 2014. Cassava genome from a wild ancestor to cultivated varieties. Nature Communications 5:5110 doi: 10.1038/ncomms6110 |
| [97] |
Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, et al. 2014. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15:312 doi: 10.1186/1471-2164-15-312 |
| [98] |
Li YH, Zhou G, Ma J, Jiang W, Jin LG, et al. 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology 32:1045−52 doi: 10.1038/nbt.2979 |
| [99] |
Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, et al. 2014. A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics 46:707−13 doi: 10.1038/ng.3008 |
| [100] |
Parween S, Nawaz K, Roy R, Pole AK, Venkata Suresh B, et al. 2015. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 5:12806 doi: 10.1038/srep12806 |
| [101] |
Kang YJ, Satyawan D, Shim S, Lee T, Lee J, et al. 2015. Draft genome sequence of adzuki bean, Vigna angularis. Scientific Reports 5:8069 doi: 10.1038/srep08069 |
| [102] |
Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, et al. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics 48:438−46 doi: 10.1038/ng.3517 |
| [103] |
Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernández-Oñate M, Minoche AE, et al. 2016. Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biology 17:32 doi: 10.1186/s13059-016-0883-6 |
| [104] |
Yasui Y, Hirakawa H, Oikawa T, Toyoshima M, Matsuzaki C, et al. 2016. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Research 23:535−46 doi: 10.1093/dnares/dsw037 |
| [105] |
Hittalmani S, Mahesh HB, Shirke MD, Biradar H, Uday G, et al. 2017. Genome and Transcriptome sequence of Finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 18:465 doi: 10.1186/s12864-017-3850-z |
| [106] |
Yang J, Moeinzadeh MH, Kuhl H, Helmuth J, Xiao P, et al. 2017. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nature Plants 3:696−703 doi: 10.1038/s41477-017-0002-z |
| [107] |
Zhang L, Li X, Ma B, Gao Q, Du H, et al. 2017. The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant 10:1224−37 doi: 10.1016/j.molp.2017.08.013 |
| [108] |
Tamiru M, Natsume S, Takagi H, White B, Yaegashi H, et al. 2017. Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biology 15:86 doi: 10.1186/s12915-017-0419-x |
| [109] |
Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, et al. 2017. The genome of Chenopodium quinoa. Nature 542:307−12 doi: 10.1038/nature21370 |
| [110] |
Hatakeyama M, Aluri S, Balachadran MT, Sivarajan SR, Patrignani A, et al. 2018. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Research 25:39−47 doi: 10.1093/dnares/dsx036 |
| [111] |
Deschamps S, Zhang Y, Llaca V, Ye L, Sanyal A, et al. 2018. A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nature Communications 9:4844 doi: 10.1038/s41467-018-07271-1 |
| [112] |
Zou C, Li L, Miki D, Li D, Tang Q, et al. 2019. The genome of broomcorn millet. Nature Communications 10:436 doi: 10.1038/s41467-019-08409-5 |
| [113] |
Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, et al. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics 51:877−84 doi: 10.1038/s41588-019-0405-z |
| [114] |
Zhuang W, Chen H, Yang M, Wang J, Pandey MK, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics 51:865−76 doi: 10.1038/s41588-019-0402-2 |
| [115] |
Xie M, Chung CY, Li MW, Wong FL, Wang X, et al. 2019. A reference-grade wild soybean genome. Nature Communications 10:1216 doi: 10.1038/s41467-019-09142-9 |
| [116] |
Kreplak J, Madoui MA, Cápal P, Novák P, Labadie K, et al. 2019. A reference genome for pea provides insight into legume genome evolution. Nature Genetics 51:1411−22 doi: 10.1038/s41588-019-0480-1 |
| [117] |
Xia Q, Pan L, Zhang R, Ni X, Wang Y, et al. 2019. The genome assembly of asparagus bean, Vigna unguiculata ssp. sesquipedialis. Scientific Data 6:124 doi: 10.1038/s41597-019-0130-6 |
| [118] |
Lonardi S, Muñoz-Amatriaín M, Liang Q, Shu S, Wanamaker SI, et al. 2019. The genome of cowpea (Vigna unguiculata [L.] Walp.). The Plant Journal 98:767−82 doi: 10.1111/tpj.14349 |
| [119] |
VanBuren R, Man Wai C, Wang X, Pardo J, Yocca AE, et al. 2020. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nature Communications 11:884 doi: 10.1038/s41467-020-14724-z |
| [120] |
Abrouk M, Ahmed HI, Cubry P, Šimoníková D, Cauet S, et al. 2020. Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nature Communications 11:4488 doi: 10.1038/s41467-020-18329-4 |
| [121] |
Yin J, Jiang L, Wang L, Han X, Guo W, et al. 2021. A high-quality genome of taro (Colocasia esculenta (L.) Schott), one of the world's oldest crops. Molecular Ecology Resources 21:68−77 doi: 10.1111/1755-0998.13239 |
| [122] |
Guo C, Wang Y, Yang A, He J, Xiao C, et al. 2020. The coix genome provides insights into panicoideae evolution and papery hull domestication. Molecular Plant 13:309−20 doi: 10.1016/j.molp.2019.11.008 |
| [123] |
Kang SH, Kim B, Choi BS, Lee HO, Kim NH, et al. 2020. Genome assembly and annotation of soft-shelled adlay (Coix lacryma-jobi variety ma-yuen), a cereal and medicinal crop in the poaceae family. Frontiers in Plant Science 11:630 doi: 10.3389/fpls.2020.00630 |
| [124] |
Liu H, Shi J, Cai Z, Huang Y, Lv M, et al. 2020. Evolution and domestication footprints uncovered from the genomes of coix. Molecular Plant 13:295−308 doi: 10.1016/j.molp.2019.11.009 |
| [125] |
Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications 11:2494 doi: 10.1038/s41467-020-16338-x |
| [126] |
Li A, Liu A, Du X, Chen JY, Yin M, et al. 2020. A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Horticulture Research 7:194 doi: 10.1038/s41438-020-00417-7 |
| [127] |
Siadjeu C, Pucker B, Viehöver P, Albach DC, Weisshaar B. 2020. High contiguity de novo genome sequence assembly of Trifoliate yam (Dioscorea dumetorum) using long read sequencing. Genes 11:274 doi: 10.3390/genes11030274 |
| [128] |
Pootakham W, Nawae W, Naktang C, Sonthirod C, Yoocha T, et al. 2021. A chromosome-scale assembly of the black gram (Vigna mungo) genome. Molecular Ecology Resources 21:238−50 doi: 10.1111/1755-0998.13243 |
| [129] |
Wang X, Chen S, Ma X, Yssel AEJ, Chaluvadi SR, et al. 2021. Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (Digitaria exilis). Gigascience 10:giab013 doi: 10.1093/gigascience/giab013 |
| [130] |
Hu W, Ji C, Shi H, Liang Z, Ding Z, et al. 2021. Allele-defined genome reveals biallelic differentiation during cassava evolution. Molecular Plant 14:851−54 doi: 10.1016/j.molp.2021.04.009 |
| [131] |
Hao Y, Bao W, Li G, Gagoshidze Z, Shu H, et al. 2021. The chromosome-based genome provides insights into the evolution in water spinach. Scientia Horticulturae 289:110501 doi: 10.1016/j.scienta.2021.110501 |
| [132] |
Kaur P, Lui C, Dudchenko O, Nandety RS, Hurgobin B, et al. 2021. Delineating the Tnt1 insertion landscape of the model legume Medicago truncatula cv. R108 at the Hi-C resolution using a chromosome-length genome assembly. International Journal of Molecular Sciences 22:4326 doi: 10.3390/ijms22094326 |
| [133] |
Li G, Wang L, Yang J, He H, Jin H, et al. 2021. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nature Genetics 53:574−84 doi: 10.1038/s41588-021-00808-z |
| [134] |
Rabanus-Wallace MT, Hackauf B, Mascher M, Lux T, Wicker T, et al. 2021. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics 53:564−73 doi: 10.1038/s41588-021-00807-0 |
| [135] |
Li Y, Leveau A, Zhao Q, Feng Q, Lu H, et al. 2021. Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals. Nature Communications 12:2563 doi: 10.1038/s41467-021-22920-8 |
| [136] |
Ramsay L, Koh CS, Kagale S, Gao D, Kaur S, et al. 2021. Genomic rearrangements have consequences for introgression breeding as revealed by genome assemblies of wild and cultivated lentil species. bioRxiv Preprint doi: 10.1101/2021.07.23.453237 |
| [137] |
Garcia T, Duitama J, Zullo SS, Gil J, Ariani A, et al. 2021. Comprehensive genomic resources related to domestication and crop improvement traits in Lima bean. Nature Communications 12:702 doi: 10.1038/s41467-021-20921-1 |
| [138] |
Moghaddam SM, Oladzad A, Koh C, Ramsay L, Hart JP, et al. 2021. The tepary bean genome provides insight into evolution and domestication under heat stress. Nature Communications 12:2638 doi: 10.1038/s41467-021-22858-x |
| [139] |
Jegadeesan S, Raizada A, Dhanasekar P, Suprasanna P. 2021. Draft genome sequence of the pulse crop blackgram [Vigna mungo (L.) Hepper] reveals potential R-genes. Scientific Reports 11:11247 doi: 10.1038/s41598-021-90683-9 |
| [140] |
Newman CS, Andres RJ, Youngblood RC, Campbell JD, Simpson SA, et al. 2023. Initiation of genomics-assisted breeding in Virginia-type peanuts through the generation of a de novo reference genome and informative markers. Frontiers in Plant Science 13:1073542 doi: 10.3389/fpls.2022.1073542 |
| [141] |
Lu RS, Chen Y, Zhang XY, Feng Y, Comes HP, et al. 2022. Genome sequencing and transcriptome analyses provide insights into the origin and domestication of water caltrop (Trapa spp., Lythraceae). Plant Biotechnology Journal 20:761−76 doi: 10.1111/pbi.13758 |
| [142] |
Xi H, Nguyen V, Ward C, Liu Z, Searle IR. 2022. Chromosome-level assembly of the common vetch (Vicia sativa) reference genome. GigaByte 2022:gigabyte38 doi: 10.46471/gigabyte.38 |
| [143] |
Islam T, Afroz N, Koh C, Hoque MN, Rahman MJ, et al. 2022. Whole-genome sequencing of a year-round fruiting jackfruit (Artocarpus heterophyllus Lam.) reveals high levels of single nucleotide variation. Frontiers in Plant Science 13:1044420 doi: 10.3389/fpls.2022.1044420 |
| [144] |
Lin X, Feng C, Lin T, Harris AJ, Li Y, et al. 2022. Jackfruit genome and population genomics provide insights into fruit evolution and domestication history in China. Horticulture Research 9:uhac173 doi: 10.1093/hr/uhac173 |
| [145] |
He M, He Y, Zhang K, Lu X, Zhang X, et al. 2022. Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. New Phytologist 235:1927−43 doi: 10.1111/nph.18306 |
| [146] |
Yan Z, Sang L, Ma Y, He Y, Sun J, et al. 2022. A de novo assembled high-quality chromosome-scale Trifolium pratense genome and fine-scale phylogenetic analysis. BMC Plant Biology 22:332 doi: 10.1186/s12870-022-03707-5 |
| [147] |
Peng Y, Yan H, Guo L, Deng C, Wang C, et al. 2022. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nature Genetics 54:1248−58 doi: 10.1038/s41588-022-01127-7 |
| [148] |
Li Y, Tan C, Li Z, Guo J, Li S, et al. 2022. The genome of Dioscorea zingiberensis sheds light on the biosynthesis, origin and evolution of the medicinally important diosgenin saponins. Horticulture Research 9:uhac165 doi: 10.1093/hr/uhac165 |
| [149] |
Kaul T, Easwaran M, Thangaraj A, Meyyazhagan A, Nehra M, et al. 2022. De novo genome assembly of rice bean (Vigna umbellata) – a nominated nutritionally rich future crop reveals novel insights into flowering potential, habit, and palatability centric - traits for efficient domestication. Frontiers in Plant Science 13:739654 doi: 10.3389/fpls.2022.739654 |
| [150] |
Liang L, Zhang J, Xiao J, Li X, Xie Y, et al. 2022. Genome and pan-genome assembly of asparagus bean (Vigna unguiculata ssp. sesquipedialis) reveal the genetic basis of cold adaptation. Frontiers in Plant Science 13:1059804 doi: 10.3389/fpls.2022.1059804 |
| [151] |
Wang H, Xu D, Wang S, Wang A, Lei L, et al. 2023. Chromosome-scale Amaranthus tricolor genome provides insights into the evolution of the genus Amaranthus and the mechanism of betalain biosynthesis. DNA Research 30:dsac050 doi: 10.1093/dnares/dsac050 |
| [152] |
Hoang NV, Sogbohossou EOD, Xiong W, Simpson CJC, Singh P, et al. 2023. The Gynandropsis gynandra genome provides insights into whole-genome duplications and the evolution of C4 photosynthesis in Cleomaceae. The Plant Cell 35:1334−59 doi: 10.1093/plcell/koad018 |
| [153] |
Chen J, Liu Y, Liu M, Guo W, Wang Y, et al. 2023. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet. Nature Genetics 55:2243−54 doi: 10.1038/s41588-023-01571-z |
| [154] |
Devos KM, Qi P, Bahri BA, Gimode DM, Jenike K, et al. 2023. Genome analyses reveal population structure and a purple stigma color gene candidate in finger millet. Nature Communications 14:3694 doi: 10.1038/s41467-023-38915-6 |
| [155] |
Singh A, Mahato AK, Maurya A, Rajkumar S, Singh AK, et al. 2023. Amaranth genomic resource database: an integrated database resource of Amaranth genes and genomics. Frontiers in Plant Science 14:1203855 doi: 10.3389/fpls.2023.1203855 |
| [156] |
Jayakodi M, Golicz AA, Kreplak J, Fechete LI, Angra D, et al. 2023. The giant diploid faba genome unlocks variation in a global protein crop. Nature 615:652−59 doi: 10.1038/s41586-023-05791-5 |
| [157] |
Santangelo JS, Battlay P, Hendrickson BT, Kuo WH, Olsen KM, et al. 2023. Haplotype-resolved, chromosome-level assembly of white clover (Trifolium repens L., Fabaceae). Genome Biology and Evolution 15:evad146 doi: 10.1093/gbe/evad146 |
| [158] |
Rajarammohan S, Kaur L, Verma A, Singh D, Mantri S, et al. 2023. Genome sequencing and assembly of Lathyrus sativus - a nutrient-rich hardy legume crop. Scientific Data 10:32 doi: 10.1038/s41597-022-01903-4 |
| [159] |
Edwards A, Njaci I, Sarkar A, Jiang Z, Kaithakottil GG, et al. 2023. Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus. Nature Communications 14:876 doi: 10.1038/s41467-023-36503-2 |
| [160] |
Liu M, Li C, Jiang T, Wang R, Wang Y, et al. 2023. Chromosome-scale genome assembly provides insights into flower coloration mechanisms of Canna indica. International Journal of Biological Macromolecules 251:126148 doi: 10.1016/j.ijbiomac.2023.126148 |
| [161] |
Zhang X, Chen Y, Wang L, Yuan Y, Fang M, et al. 2023. Pangenome of water caltrop reveals structural variations and asymmetric subgenome divergence after allopolyploidization. Horticulture Research 10:uhad203 doi: 10.1093/hr/uhad203 |
| [162] |
Qu M, Fan X, Hao C, Zheng Y, Guo S, et al. 2023. Chromosome-level assemblies of cultivated water chestnut Trapa bicornis and its wild relative Trapa incisa. Scientific Data 10:407 doi: 10.1038/s41597-023-02270-4 |
| [163] |
Alejo-Jacuinde G, Nájera-González HR, Chávez Montes RA, Gutierrez Reyes CD, Barragán-Rosillo AC, et al. 2023. Multi-omic analyses reveal the unique properties of chia (Salvia hispanica) seed metabolism. Communications Biology 6:820 doi: 10.1038/s42003-023-05192-4 |
| [164] |
Pan X, Chang Y, Li C, Qiu X, Cui X, et al. 2023. Chromosome-level genome assembly of Salvia miltiorrhiza with orange roots uncovers the role of Sm2OGD3 in catalyzing 15,16-dehydrogenation of tanshinones. Horticulture Research 10:uhad069 doi: 10.1093/hr/uhad069 |
| [165] |
Das RR, Kumar A, Baghel DS, Mahato AK, Dey N, et al. 2024. Whole genome assembly of the Little Millet (Panicum sumatrense) genome: A climate resilient crop species. bioRxiv Preprint doi: 10.1101/2024.02.26.582036 |
| [166] |
Li JH, Li MJ, Li WL, Li XY, Ma YB, et al. 2024. Leguminous industrial crop guar (Cyamopsis tetragonoloba): The chromosome-level reference genome de novo assembly. Industrial Crops and Products 216:118748 doi: 10.1016/j.indcrop.2024.118748 |
| [167] |
Botkin JR, Farmer AD, Young ND, Curtin SJ. 2024. Genome assembly of Medicago truncatula accession SA27063 provides insight into spring black stem and leaf spot disease resistance. BMC Genomics 25:204 doi: 10.1186/s12864-024-10112-9 |
| [168] |
He Q, Li W, Miao Y, Wang Y, Liu N, et al. 2024. The near-complete genome assembly of hexaploid wild oat reveals its genome evolution and divergence with cultivated oats. Nature Plants 10:2062−78 doi: 10.1038/s41477-024-01866-x |
| [169] |
Yuan L, Lei L, Jiang F, Wang A, Chen R, et al. 2024. The genomes of 5 underutilized Papilionoideae crops provide insights into root nodulation and disease resistance. GigaScience 13:giae063 doi: 10.1093/gigascience/giae063 |
| [170] |
Vigouroux M, Novák P, Oliveira LC, Santos C, Cheema J, et al. 2024. A chromosome-scale reference genome of grasspea (Lathyrus sativus). Scientific Data 11:1035 doi: 10.1038/s41597-024-03868-y |
| [171] |
Cortinovis G, Vincenzi L, Anderson R, Marturano G, Marsh JI, et al. 2024. Adaptive gene loss in the common bean pan-genome during range expansion and domestication. Nature Communications 15:6698 doi: 10.1038/s41467-024-51032-2 |
| [172] |
Khanbo S, Phadphon P, Naktang C, Sangsrakru D, Waiyamitra P, et al. 2024. A chromosome-scale genome assembly of mungbean (Vigna radiata). PeerJ 12:e18771 doi: 10.7717/peerj.18771 |
| [173] |
Li W, He F, Wang X, Liu Q, Zhang X, et al. 2024. Chromosome genome assembly and annotation of Adzuki Bean (Vigna angularis). Scientific Data 11:1074 doi: 10.1038/s41597-024-03911-y |
| [174] |
Wan JN, Wang SW, Leitch AR, Leitch IJ, Jian JB, et al. 2024. The rise of baobab trees in Madagascar. Nature 629:1091−99 doi: 10.1038/s41586-024-07447-4 |
| [175] |
Wei C, Gao L, Xiao R, Wang Y, Chen B, et al. 2024. Complete telomere-to-telomere assemblies of two sorghum genomes to guide biological discovery. iMeta 3:e193 doi: 10.1002/imt2.193 |
| [176] |
Ford SA, Ness RW, Kwon M, Ro DK, Phillips MA. 2024. A chromosome level reference genome of Diviner's sage (Salvia divinorum) provides insight into salvinorin A biosynthesis. BMC Plant Biology 24:914 doi: 10.1186/s12870-024-05633-0 |
| [177] |
Ceylan F, Uncu AO, Soyturk Patat A, Uncu AT. 2024. Whole-genome resequencing identifies exonic single-nucleotide variations in terpenoid biosynthesis genes of the medicinal and aromatic plant common sage (Salvia officinalis L.). Genetic Resources and Crop Evolution 71:4171−81 doi: 10.1007/s10722-024-01900-z |
| [178] |
Lai Y, Ma J, Zhang X, Xuan X, Zhu F, et al. 2024. High-quality chromosome-level genome assembly and multi-omics analysis of rosemary (Salvia rosmarinus) reveals new insights into the environmental and genome adaptation. Plant Biotechnol J 22:1833−47 doi: 10.1111/pbi.14305 |
| [179] |
Li W, Wang Y, Liu J, He Q, Zhou Y, et al. 2025. A gap-free complete genome assembly of oat and OatOmics, a multi-omics database. Molecular Plant 18:179−82 doi: 10.1016/j.molp.2025.01.006 |
| [180] |
Zhao B, Zhang H, Zhao Q, Wu R, You Q, et al. 2025. Gap-free genome assembly and metabolomics analysis of common bean provide insights into genomic characteristics and metabolic determinants of seed coat pigmentation. Journal of Genetics and Genomics In press doi: 10.1016/j.jgg.2025.03.002 |
| [181] |
Oraon PK, Ambreen H, Yadav P, Ramarao S, Goel S. 2025. A chromosome-scale reference assembly of Vigna radiata enables delineation of centromeres and telomeres. Scientific Data 12:305 doi: 10.1038/s41597-025-04436-8 |
| [182] |
Choi S, Kang Y, Kim C. 2025. Chromosome-level genome assembly of Salvia sclarea. Scientific Data 12:14 doi: 10.1038/s41597-024-04347-0 |