[1]

Cao F, Chen R, Li Y, Han R, Li F, et al. 2022. Effects of NaCl and MTGase on printability and gelling properties of extrusion-based 3D printed white croaker (Argyrosomus argentatus) surimi. LWT 164:113646

doi: 10.1016/j.lwt.2022.113646
[2]

Yang Y, Cao F, Han R, Li F, Shi H, et al. 2024. Radio frequency heating induced 3D printed white croaker (Argyrosomus argentatus) surimi gelation: Effectiveness and gel quality evaluation. Innovative Food Science & Emerging Technologies 93:103608

doi: 10.1016/j.ifset.2024.103608
[3]

Yang Z, Lu K, Zhao Y, Shi X, Mao W, et al. 2024. Effects of different heat-induced setting methods on the structural stability and properties of 3D-printed surimi gels. LWT 198:115957

doi: 10.1016/j.lwt.2024.115957
[4]

Zhan JQ, Chen YW, Li GS, Hu YQ. 2023. Study on the structure and preservation mechanism of 3D-Printed surimi with Ca2+ and Xylo-oligosaccharides. Food Bioscience 54:102905

doi: 10.1016/j.fbio.2023.102905
[5]

Núñez-Flores R, Cando D, Borderías AJ, Moreno HM. 2018. Importance of salt and temperature in myosin polymerization during surimi gelation. Food Chemistry 239:1226−34

doi: 10.1016/j.foodchem.2017.07.028
[6]

Li F, Zhu Y, Li S, Wang P, Zhang R, et al. 2021. A strategy for improving the uniformity of radio frequency tempering for frozen beef with cuboid and step shapes. Food Control 123:107719

doi: 10.1016/j.foodcont.2020.107719
[7]

Dragoev SG, Kolev ND, Vlahova-Vangelova DB, Balev DK. 2024. Radio frequency food processing. Current status and perspectives - a review. Food Science and Applied Biotechnology 7:103−21

doi: 10.30721/fsab2024.v7.i1.304
[8]

Oke AB, Baik OD. 2022. Role of moisture content, temperature, and frequency on dielectric behaviour of red lentil and Kabuli chickpea in relation to radio frequency heating. Applied Food Research 2:100046

doi: 10.1016/j.afres.2022.100046
[9]

Zhang Y, Chen X, Liu Y, Li F, Tang J, et al. 2024. Using ice surrounding to improve radio frequency tempering uniformity of bulk pacific white shrimp (Litopenaeus vannamei). Journal of Food Engineering 371:111967

doi: 10.1016/j.jfoodeng.2024.111967
[10]

Chen X, Li F, Tang J, Shi H, Xie J, et al. 2023. Temperature uniformity of frozen pork with various combinations of fat and lean portions tempered in radio frequency. Journal of Food Engineering 344:111396

doi: 10.1016/j.jfoodeng.2022.111396
[11]

Liu Y, Tong T, Han R, Zhang Y, Li F, et al. 2023. Effect of different arrangements of globe particles on radio frequency heating uniformity: Using black pepper as an example. LWT 174:114422

doi: 10.1016/j.lwt.2022.114422
[12]

Jiang H, Yang H, Zhang W, Yan B, Zhang N, et al. 2023. Computational study on radio frequency thawing of irregularly shaped aquatic product: using hairtail fish as an example. Journal of Food Engineering 354:111564

doi: 10.1016/j.jfoodeng.2023.111564
[13]

Zhang R, Li F, Tang J, Koral T, Jiao Y. 2020. Improved accuracy of radio frequency (RF) heating simulations using 3D scanning techniques for irregular-shape food. LWT 121:108951

doi: 10.1016/j.lwt.2019.108951
[14]

Cui Y, Wang X, Jiang S, Wang S, Hou L. 2023. Improving radio frequency heating uniformity in milled rice with different packaging shapes by changing temperature of forced air. Innovative Food Science & Emerging Technologies 84:103280

[15]

Gong C, Zhao Y, Zhang H, Yue J, Miao Y, et al. 2019. Investigation of radio frequency heating as a dry-blanching method for carrot cubes. Journal of Food Engineering 245:53−56

doi: 10.1016/j.jfoodeng.2018.10.004
[16]

Tasci C, Liu S, Erdogdu F, Ozturk S. 2024. Improving radio frequency heating uniformity in peanuts: effects of packaging geometry, electrode gap, particle size and interlayer displacement process. Innovative Food Science & Emerging Technologies 95:103728

doi: 10.1016/j.ifset.2024.103728
[17]

Tong T, Wang P, Shi H, Li F, Jiao Y. 2022. Radio frequency inactivation of E. coli O157 : H7 and Salmonella Typhimurium ATCC 14028 in black pepper (Piper nigrum) kernels: thermal inactivation kinetic study and quality evaluation. Food Control 132:108553

doi: 10.1016/j.foodcont.2021.108553
[18]

Romano V, Marra F. 2008. A numerical analysis of radio frequency heating of regular shaped foodstuff. Journal of Food Engineering 84:449−57

doi: 10.1016/j.jfoodeng.2007.06.006
[19]

Birla SL, Wang S, Tang J. 2008. Computer simulation of radio frequency heating of model fruit immersed in water. Journal of Food Engineering 84:270−80

doi: 10.1016/j.jfoodeng.2007.05.020
[20]

Alfaifi B, Tang J, Rasco B, Wang S, Sablani S. 2016. Computer simulation analyses to improve radio frequency (RF) heating uniformity in dried fruits for insect control. Innovative Food Science & Emerging Technologies 37:125−37

doi: 10.1016/j.ifset.2016.08.012
[21]

Jain D, Tiwari GN. 2004. Effect of greenhouse on crop drying under natural and forced convection I: evaluation of convective mass transfer coefficient. Energy Conversion and Management 45:E765−E783

doi: 10.1016/S0196-8904(03)00178-X
[22]

Pitchai K, Chen J, Birla S, Jones D, Gonzalez R, et al. 2015. Multiphysics modeling of microwave heating of a frozen heterogeneous meal rotating on a turntable. Journal of Food Science 80:E2803−E2814

doi: 10.1111/1750-3841.13136
[23]

Chamchong M, Datta AK. 1999. Thawing of foods in a microwave oven: I. Effect of power levels and power cycling. The Journal of Microwave Power and Electromagnetic Energy 34:9−21

doi: 10.1080/08327823.1999.11688384
[24]

Wang P, Liu J, Mao Y, Guan X, Wang S. 2021. Improvement of radio frequency heating uniformity for millets by changing shape and adding polypropylene blocks. Innovative Food Science & Emerging Technologies 74:102856

doi: 10.1016/j.ifset.2021.102856
[25]

Zhang C, Dong Y, Sun Y, Liu Y, Wang Y, et al. 2022. Radio frequency heating of green peas (Pisum sativum L.): the improvement of heating uniformity and its dry blanching effect. Journal of Food Science 87:738−49

doi: 10.1111/1750-3841.16010
[26]

Jiao Y, Shi H, Tang J, Li F, Wang S. 2015. Improvement of radio frequency (RF) heating uniformity on low moisture foods with Polyetherimide (PEI) blocks. Food Research International 74:106−14

doi: 10.1016/j.foodres.2015.04.016
[27]

Cui B, Ye P, Wang K, Sun Y, Mao C, et al. 2023. Developing radio frequency (RF) heating protocol in packed tofu processing by computer simulation. Current Research in Food Science 6:100474

doi: 10.1016/j.crfs.2023.100474
[28]

de Sousa RR, Jr., Carastan DJ. 2019. Influence of morphology and rheological properties on the mechanical and dielectric behavior of block copolymer gels. Macromolecular Symposia 383:1800056

doi: 10.1002/masy.201800056
[29]

Kawaguchi T, Kita R, Shinyashiki N, Yagihara S, Fukuzaki M. 2018. Physical properties of tofu gel probed by water translational/rotational dynamics. Food Hydrocolloids 77:474−81

doi: 10.1016/j.foodhyd.2017.10.025
[30]

Belibagli KB, Speers RA, Paulson AT. 2003. Thermophysical properties of silver hake and mackerel surimi at cooking temperatures. Journal of Food Engineering 60:439−48

doi: 10.1016/S0260-8774(03)00067-0
[31]

Fneich F, Ville J, Seantier B, Aubry T. 2021. Nanocellulose-based foam morphological, mechanical and thermal properties in relation to hydrogel precursor structure and rheology. Carbohydrate Polymers 253:117233

doi: 10.1016/j.carbpol.2020.117233
[32]

Huang Z, Marra F, Wang S. 2016. A novel strategy for improving radio frequency heating uniformity of dry food products using computational modeling. Innovative Food Science & Emerging Technologies 34:100−11

doi: 10.1016/j.ifset.2016.01.005
[33]

Zhang S, Zhou L, Ling B, Wang S. 2016. Dielectric properties of peanut kernels associated with microwave and radio frequency drying. Biosystems Engineering 145:108−17

doi: 10.1016/j.biosystemseng.2016.03.002