| [1] |
Gokhale P, Bhat O, Bhat S. 2018. Introduction to IOT. International Advanced Research Journal in Science, Engineering and Technology 5(1):41−44 |
| [2] |
Ma W, Yang X, Tian Z. 2024. Agriculture neutralization: perspective from intelligent agricultural machinery. Circular Agricultural Systems 4:e002 doi: 10.48130/cas-0024-0002 |
| [3] |
Ullah Z, Rehman AU, Wang S, Hasanien HM, Luo P, et al. 2023. IoT-based monitoring and control of substations and smart grids with renewables and electric vehicles integration. Energy 282:128924 doi: 10.1016/j.energy.2023.128924 |
| [4] |
Palazzari V, Mezzanotte P, Alimenti F, Fratini F, Orecchini G, et al. 2017. Leaf compatible 'eco-friendly' temperature sensor clip for high density monitoring wireless networks. Wireless Power Transfer 4(1):55−60 doi: 10.1017/wpt.2017.1 |
| [5] |
Yang P, Abusafia A, Lakhdari A, Bouguettaya A. 2023. Monitoring efficiency of iot wireless charging. 2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), 13−17 March 2023, Atlanta, GA, USA. USA: IEEE. pp. 306−8. doi: 10.1109/PerComWorkshops56833.2023.10150276 |
| [6] |
Xing Y, Pan H, Xu B, Tapparello C, Shi W, et al. 2021. Optimal Wireless Information and Power Transfer Using Deep Q-Network. Wireless Power Transfer 8:5513509 doi: 10.1155/2021/5513509 |
| [7] |
Fu Y, Mei H, Wang K, Yang K. 2021. Joint optimization of 3D trajectory and scheduling for solar-powered UAV systems. IEEE Transactions on Vehicular Technology 70(4):3972−77 doi: 10.1109/TVT.2021.3063310 |
| [8] |
Xie L, Shi Y, Hou YT, Lou W, Sherali HD, et al. 2014. Rechargeable sensor networks with magnetic resonant coupling. In Rechargeable Sensor Networks: Technology, Theory, and Application, eds. Chen J, He S, Sun Y. World Scientific. pp. 31−68. doi: 10.1142/9789814525466_0002 |
| [9] |
Sharma H, Haque A, Jaffery ZA. 2018. Solar energy harvesting wireless sensor network nodes: A survey. Journal of Renewable and Sustainable Energy 10(2):023704 doi: 10.1063/1.500661 |
| [10] |
Sharma H, Haque A, Jaffery ZA. 2018. An efficient solar energy harvesting system for wireless sensor nodes. 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 22−24 October 2018, Delhi, India. USA: IEEE. pp. 461−64. doi: 10.1109/ICPEICES.2018.8897434 |
| [11] |
Ram SK, Chourasia S, Das BB, Swain AK, Mahapatra K, et al. 2020. A solar based power module for battery-less IoT sensors towards sustainable smart cities. 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 6−8 July 2020, Limassol, Cyprus. USA: IEEE. pp. 458−63. doi: 10.1109/ISVLSI49217.2020.00-14 |
| [12] |
Yang J, Zhu K, Zhu X, Wang J. 2021. Learning-based aerial charging scheduling for UAV-based data collection. Wireless Algorithms, Systems, and Applications: 16th International Conference, WASA 2021, Nanjing, China, June 25–27, 2021, Proceedings, Part II 16. Cham: Springer International Publishing. pp. 600−11. doi: 10.1007/978-3-030-86130-8_47 |
| [13] |
Rathod Y, Hughes L. 2019. Simulating the charging of electric vehicles by laser. Procedia Computer Science 155:527−34 doi: 10.1016/j.procs.2019.08.073 |
| [14] |
Luo C, Liu N, Hou Y, Hong Y, Chen Z, et al. 2023. Trajectory optimization of laser-charged UAV to minimize the average age of information for wireless rechargeable sensor network. Theoretical Computer Science 2023 945:113680 doi: 10.1016/j.tcs.2022.12.030 |
| [15] |
Zhang L, Wang Y, Min M, Guo C, Sharma V, et al. 2023. Privacy-aware laser wireless power transfer for aerial multi-access edge computing: a colonel blotto game approach. IEEE Internet of Things Journal 10(7):5923−39 doi: 10.1109/JIOT.2022.3167052 |
| [16] |
Liao JH, Jiang JR. 2014. Wireless charger deployment optimization for wireless rechargeable sensor networks. 2014 7th International Conference on Ubi-Media Computing and Workshops, 12−14 July 2014, Ulaanbaatar, Mongolia. USA: IEEE. pp. 160−64. doi: 10.1109/U-MEDIA.2014.72 |
| [17] |
Chen YC, Jiang JR. 2016. Particle swarm optimization for charger deployment in wireless rechargeable sensor networks. 2016 26th International Telecommunication Networks and Applications Conference (ITNAC), 7−9 December 2016, Dunedin, New Zealand. USA: IEEE. pp. 231−36. doi: 10.1109/ATNAC.2016.7878814 |
| [18] |
Chien WC, Cho HH, Chao HC, Shih TK. 2016. Enhanced SA-based charging algorithm for WRSN. 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), 5−9 September 2016, Paphos, Cyprus. USA: IEEE. pp. 1012−17. doi: 10.1109/IWCMC.2016.7577197 |
| [19] |
Li M, Liu L, Wang Y, Peng J, Xi J, et al. 2021. Efficient wireless static chargers deployment for UAV networks. 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), 30 September 2021 − 3 October 2021, New York City, NY, USA. USA: IEEE. pp. 1483−90. doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00200 |
| [20] |
Liu H, Zhong L, Liu Z, Lin F. 2022. A multi-objective genetic optimization algorithm for charger selection in static charger deployment scheme for WRSN. 2022 IEEE 14th International Conference on Advanced Infocomm Technology (ICAIT), 8-11 July 2022, Chongqing, China. USA: IEEE. pp. 230−35. doi: 10.1109/ICAIT56197.2022.9862698 |
| [21] |
Lin T L, Chang H Y, Wang Y H. 2020. A novel hybrid search and remove strategy for power balance wireless charger deployment in wireless rechargeable sensor networks. Energies 13(10):2661 doi: 10.3390/en13102661 |
| [22] |
You W, Ren M, Ma Y, Wu D, Yang J, et al. 2023. Practical charger placement scheme for wireless rechargeable sensor networks with obstacles. ACM Transactions on Sensor Networks 20(1):1−23 doi: 10.1145/3614431 |
| [23] |
Zhang Q, Fang W, Liu Q, Wu J, Xia P, et al. 2018. Distributed laser charging: A wireless power transfer approach. IEEE Internet of Things Journal 5(5):3853−64 doi: 10.1109/JIOT.2018.2851070 |
| [24] |
Lahmeri MA, Kishk MA, Alouini MS. 2020. Stochastic geometry-based analysis of airborne base stations with laser-powered UAVs. IEEE Communications Letters 24(1):173−77 doi: 10.1109/LCOMM.2019.2947039 |
| [25] |
Hartmanis J. 1982. Computers and intractability: a guide to the theory of NP-completeness (Michael R. Garey and David S. Johnson). SIAM Review 24(1):90−91 doi: 10.1137/1024022 |
| [26] |
Littman ML. 1994. Markov games as a framework for multi-agent reinforcement learning. In Machine Learning Proceedings 1994, eds. Cohen WW, Hirsh H. USA: Morgan Kaufmann. pp. 157−63. doi: 10.1016/B978-1-55860-335-6.50027-1 |
| [27] |
Zhang K, Liu Y, Liu J, Liu M, Başar T. 2020. Distributed learning of average belief over networks using sequential observations. Automatica 115:108857 doi: 10.1016/j.automatica.2020.108857 |
| [28] |
Lowe R, Wu YI, Tamar A, Harb J, Abbeel P, et al. 2017. Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in Neural Information Processing Systems 30 (NIPS 2017), 4-9 Dec 2017, Long Beach, USA. https://proceedings.neurips.cc/paper_files/paper/2017 |
| [29] |
van de Velden M, D’Enza AI, Markos A. 2019. Distance-based clustering of mixed data. Wiley Interdisciplinary Reviews: Computational Statistics 11(3):e1456 doi: 10.1002/wics.1456 |