[1]

Ogawa Y, Dansako T, Yano K, Sakurai N, Suzuki H, et al. 2008. Efficient and high-throughput vector construction and Agrobacterium-mediated transformation of Arabidopsis thaliana suspension-cultured cells for functional genomics. Plant and Cell Physiology 49:242−50

doi: 10.1093/pcp/pcm181
[2]

Kato K, Matsumoto T, Koiwai A, Mizusaki S, Nishida K, et al. 1972. Liquid suspension culture of tobacco cells. In Ferment Technology Today, Terui G. Osaka: Society of Fermentation Technology. pp. 689−95

[3]

Nagata T, Sakamoto K, Shimizu T. 2004. Tobacco by-2 cells: the present and beyond. In Vitro Cellular & Developmental Biology - Plant 40:163−66

doi: 10.1079/IVP2003526
[4]

Nagata T, Nemoto Y, Hasezawa S. 1992. Tobacco BY-2 cell line as the "HeLa" cell in the cell biology of higher plants. International Review of Cytology 132:1−30

doi: 10.1016/S0074-7696(08)62452-3
[5]

Yu M, Yuan M, Ren H. 2006. Visualization of actin cytoskeletal dynamics during the cell cycle in tobacco (Nicotiana tabacum L. cv Bright Yellow) cells. Biology of the Cell 98:295−306

doi: 10.1042/BC20050074
[6]

Delporte A, De Zaeytijd J, De Storme N, Azmi A, Geelen D, et al. 2014. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin. Plant Physiology and Biochemistry 83:151−58

doi: 10.1016/j.plaphy.2014.07.021
[7]

Harashima H, Kato K, Shinmyo A, Sekine M. 2007. Auxin is required for the assembly of A-type cyclin-dependent kinase complexes in tobacco cell suspension culture. Journal of Plant Physiology 164:1103−12

doi: 10.1016/j.jplph.2007.01.005
[8]

Issawi M, Muhieddine M, Girard C, Sol V, Riou C. 2017. Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition. Glycoconjugate Journal 34:585−90

doi: 10.1007/s10719-017-9782-7
[9]

Han JY, Wang HY, Choi YE. 2014. Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Reports 33:225−33

doi: 10.1007/s00299-013-1523-1
[10]

Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, et al. 2009. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology 166:146−56

doi: 10.1016/j.jplph.2008.03.002
[11]

Gai YP, Ji XL, Lu W, Han XJ, Yang GD, et al. 2011. A novel late embryogenesis abundant like protein associated with chilling stress in Nicotiana tabacum cv. bright yellow-2 cell suspension culture. Molecular & Cellular Proteomics 10:M111.010363

doi: 10.1074/mcp.M111.010363
[12]

Kaňuková Š, Lenkavská K, Gubišová M, Kraic J. 2024. Suspension culture of stem cells established of Calendula officinalis L. Scientific Reports 14:441

doi: 10.1038/s41598-023-50945-0
[13]

Lv S, Ding F, Zhang S, Nosov AM, Kitashov AV, et al. 2024. Induction and suspension culture of Panax japonicus callus tissue for the production of secondary metabolic active substances. Plants 13:2480

doi: 10.3390/plants13172480
[14]

Goyal S, Chatterjee V, Kulkarni VM, Bhat V. 2023. Plant regeneration through somatic embryogenesis in cell suspensions of Cenchrus ciliaris L. Plant Methods 19:110

doi: 10.1186/s13007-023-01081-3
[15]

Wang D, Yuan G, Yu C, Xie Y, Yin Y, et al. 2024. Establishment and optimization of the embryogenic cell suspension culture system for Taxodium hybrid 'zhongshanshan'. Plant Cell, Tissue and Organ Culture (PCTOC) 160:7

doi: 10.1007/s11240-024-02942-y
[16]

Singh M, Asthana P, Rai MK, Jaiswal U. 2024. Somatic embryogenesis and plant regeneration from suspension cultures of Sapindus trifoliatus. Plant Cell, Tissue and Organ Culture (PCTOC) 157:36

doi: 10.1007/s11240-024-02760-2
[17]

Liu C, Li K, Wang M, Fan E, Yang C, et al. 2021. Qu-2, a robust poplar suspension cell line for molecular biology. Journal of Forestry Research 32:733−40

doi: 10.1007/s11676-020-01266-9
[18]

Xu X, Pan S, Cheng S, Zhang B, Mu D, et al. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475:189−95

doi: 10.1038/nature10158
[19]

Li Y, Wei H, Yang J, Du K, Li J, et al. 2020. High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis. Horticulture Research 7:183

doi: 10.1038/s41438-020-00406-w
[20]

Zhang L, Hu J, Han X, Li J, Gao Y, et al. 2019. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications 10:1494

doi: 10.1038/s41467-019-09518-x
[21]

Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596−604

doi: 10.1126/science.1128691
[22]

Ma J, Wan D, Duan B, Bai X, Bai Q, et al. 2019. Genome sequence and genetic transformation of a widely distributed and cultivated poplar. Plant Biotechnology Journal 17:451−60

doi: 10.1111/pbi.12989
[23]

Ingvarsson PK, Bernhardsson C. 2020. Genome-wide signatures of environmental adaptation in European aspen (Populus tremula) under current and future climate conditions. Evolutionary Applications 13:132−42

doi: 10.1111/eva.12792
[24]

Von Kopecky F. 1960. Experimentelle Erzeugung von haploiden Weißpappeln (Populus alba L.). Silvae Genetica 9:102−09

[25]

Illies ZM. 1974. Induction of haploid parthenogenesis in Aspen by post-pollination treatment with toluidine-blue. Silvae Genetica 23:221−26

[26]

Winton LL, Einspahr DW. 1968. The use of heat-treated pollen for aspen haploid production. Forest Science 14:406−07

doi: 10.1093/forestscience/14.4.406
[27]

Deutsch F, Kumlehn J, Ziegenhagen B, Fladung M. 2004. Stable haploid poplar callus lines from immature pollen culture. Physiologia Plantarum 120:613−22

doi: 10.1111/j.0031-9317.2004.0266.x
[28]

Liu W, Liu C, Chen S, Wang M, Wang X, et al. 2024. A nearly gapless, highly contiguous reference genome for a doubled haploid line of Populus ussuriensis, enabling advanced genomic studies. Forestry Research 4:e019

doi: 10.48130/forres-0024-0016
[29]

Murashige T, Skoog F. 1962. A Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15:473−97

doi: 10.1111/j.1399-3054.1962.tb08052.x
[30]

Porebski S, Bailey LG, Baum BR. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15:8−15

doi: 10.1007/BF02772108
[31]

Dou QW, Chen ZG, Liu YA, Tsujimoto H. 2009. High frequency of karyotype variation revealed by sequential FISH and GISH in plateau perennial grass forage Elymus nutans. Breeding Science 59:651−56

doi: 10.1270/jsbbs.59.651
[32]

Liu B, Wang S, Tao X, Liu C, Qu G, et al. 2021. Molecular karyotyping on Populus simonii × P. nigra and the derived doubled haploid. International Journal of Molecular Sciences 22:11424

doi: 10.3390/ijms222111424
[33]

Liu B, Shi Y, Yuan J, Hu X, Zhang H, et al. 2013. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv 00:1308.2012

doi: 10.48550/arXiv.1308.2012
[34]

Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, et al. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods 13:1050−54

doi: 10.1038/nmeth.4035
[35]

Hu J, Fan J, Sun Z, Liu S. 2020. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36:2253−55

doi: 10.1093/bioinformatics/btz891
[36]

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963

doi: 10.1371/journal.pone.0112963
[37]

Vasimuddin M, Misra S, Li H, Aluru S. 2019. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. Proc. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 2019. US: IEEE. pp. 314−24. doi: 10.1109/IPDPS.2019.00041

[38]

Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92−95

doi: 10.1126/science.aal3327
[39]

Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, et al. 2016. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems 3:95−98

doi: 10.1016/j.cels.2016.07.002
[40]

Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933−35

doi: 10.1093/bioinformatics/btt509
[41]

Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, et al. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35:3100−08

doi: 10.1093/nar/gkm160
[42]

Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Research 19:1639−45

doi: 10.1101/gr.092759.109
[43]

Lin YC, Li W, Chen H, Li Q, Sun YH, et al. 2014. A simple improved-throughput xylem protoplast system for studying wood formation. Nature Protocols 9:2194−205

doi: 10.1038/nprot.2014.147
[44]

Zhang Y, Zhang F, Li X, Baller JA, Qi Y, et al. 2012. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiology 161:20−27

doi: 10.1104/pp.112.205179
[45]

Li S, Lin YCJ, Wang P, Zhang B, Li M, et al. 2019. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. The Plant Cell 31:663−86

doi: 10.1105/tpc.18.00437
[46]

An G. 1985. High efficiency transformation of cultured tobacco cells. Plant Physiology 79:568−70

doi: 10.1104/pp.79.2.568
[47]

Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, et al. 2017. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports 7:507

doi: 10.1038/s41598-017-00501-4
[48]

Liu C, Wang S, Liu Y, Wang M, Fan E, et al. 2023. Exceptionally high genetic variance of the doubled haploid (DH) population of poplar. Journal of Forestry Research 34:1941−50

doi: 10.1007/s11676-023-01612-7
[49]

Wang Y, Yu J, Zhang X, He Y, Chen S, et al. 2023. Morphological, histological, and transcriptome analysis of doubled haploid plants in poplars (Populus simonii × Populus nigra). Forests 14:1535

doi: 10.3390/f14081535
[50]

Roose JL, Frankel LK, Bricker TM. 2011. Developmental defects in mutants of the PsbP domain protein 5 in Arabidopsis thaliana. PLoS One 6:e28624

doi: 10.1371/journal.pone.0028624