| [1] |
Pianaro A, Pinto JP, Ferreira DT, Ishikawa NK, Braz-Filho R. 2009. Iridóide glicosilado e derivados fenólicos antifúngicos isolados das raízes de Spathodea campanulata [Iridoid glucoside and antifungal phenolic compounds from Spathodea campanulata roots]. Semina: Ciências Agrárias 28(2):251 doi: 10.5433/1679-0359.2007v28n2p251 |
| [2] |
Yang Y. 2014. Analysis of volatile constituents of Spathodea campanulata flowers by SPME-GC/MS. Chinese Journal of Tropical Crops 35:1016−20 doi: 10.3969/j.issn.1000-2561.2014.05.031 |
| [3] |
Wang Y, Yuan X, Li Y, Zhang J. 2019. The complete chloroplast genome sequence of Spathodea campanulata. Mitochondrial DNA Part B 4(2):3469−70 doi: 10.1080/23802359.2019.1674710 |
| [4] |
Bittencourt NS Jr, Gibbs PE, Semir J. 2003. Histological study of post-pollination events in Spathodea campanulata beauv. (Bignoniaceae), a species with late-acting self-incompatibility. Annals of Botany 91(7):827−34 doi: 10.1093/aob/mcg088 |
| [5] |
Mendes NM, de Souza CP, Araújo N, Pereira JP, Katz N. 1986. Molluscicide activity of some natural products on Biomphalaria glabrata. Memorias Do Instituto Oswaldo Cruz 81(1):87−91 doi: 10.1590/s0074-02761986000100012 |
| [6] |
Ofori-Kwakye K, Kwapong AA, Bayor MT. 2011. Wound healing potential of methanol extract of Spathodea campanulata stem bark formulated into a topical preparation. African Journal of Traditional, Complementary, and Alternative Medicines 8(3):218−23 doi: 10.4314/ajtcam.v8i3.65280 |
| [7] |
Świątek Ł, Sieniawska E, Sinan KI, Zengin G, Uba AI, et al. 2022. Bridging the chemical profiles and biological effects of Spathodea campanulata extracts: a new contribution on the road from natural treasure to pharmacy shelves. Molecules 27(15):4694 doi: 10.3390/molecules27154694 |
| [8] |
Niyonzima G, Laekeman G, Witvrouw M, Van Poel B, Pieters L, et al. 1999. Hypoglycemic, anticomplement and anti-HIV activities of Spathodea campanulata stem bark. Phytomedicine 6:45−49 doi: 10.1016/S0944-7113(99)80034-8 |
| [9] |
Sy GY, Nongonierma RB, Ngewou PW, Mengata DE, Dieye AM, et al. 2005. Healing activity of methanolic extract of the barks of Spathodea campanulata Beauv (Bignoniaceae) in rat experimental burn model. Dakar Medical 50(2):77−81 |
| [10] |
Ochwang' i DO, Kimwele CN, Oduma JA, Gathumbi PK, Mbaria JM, et al. 2014. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. Journal of Ethnopharmacology 151:1040−55 doi: 10.1016/j.jep.2013.11.051 |
| [11] |
Ilodigwe EE, Akah PA, Nworu CS. 2010. Anticonvulsant activity of ethanol leaf extract of Spathodea campanulata P. Beauv (Bignoniaceae). Journal of Medicinal Food 13(4):827−33 doi: 10.1089/jmf.2009.0144 |
| [12] |
Silva VO, Freitas AA, Maçanita AL, Quina FH. 2016. Chemistry and photochemistry of natural plant pigments: the anthocyanins. Journal of Physical Organic Chemistry 29:594−99 doi: 10.1002/poc.3534 |
| [13] |
Smeriglio A, Barreca D, Bellocco E, Trombetta D. 2016. Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research 30:1265−86 doi: 10.1002/ptr.5642 |
| [14] |
Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science 18(9):477−83 doi: 10.1016/j.tplants.2013.06.003 |
| [15] |
Chalker-Scott L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology 70:1−9 doi: 10.1111/j.1751-1097.1999.tb01944.x |
| [16] |
Ahmed NU, Park JI, Jung HJ, Yang TJ, Hur Y, et al. 2014. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene 550:46−55 doi: 10.1016/j.gene.2014.08.013 |
| [17] |
van Loon LC. 2016. The intelligent behavior of plants. Trends in Plant Science 21(4):286−94 doi: 10.1016/j.tplants.2015.11.009 |
| [18] |
Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, et al. 2007. Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition & Food Research 51(6):675−83 doi: 10.1002/mnfr.200700002 |
| [19] |
Jiang L, Yue M, Liu Y, Zhang N, Lin Y, et al. 2023. A novel R2R3-MYB transcription factor FaMYB5 positively regulates anthocyanin and proanthocyanidin biosynthesis in cultivated strawberries (Fragaria × Ananassa). Plant Biotechnology Journal 21(6):1140−58 doi: 10.1111/pbi.14024 |
| [20] |
Liu Z, Shi MZ, Xie DY. 2014. Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins. Planta 239(4):765−81 doi: 10.1007/s00425-013-2011-0 |
| [21] |
Sun Q, Jiang S, Zhang T, Xu H, Fang H, et al. 2019. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science 289:110286 doi: 10.1016/j.plantsci.2019.110286 |
| [22] |
An JP, Zhang XW, Liu YJ, Wang XF, You CX, et al. 2021. ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. Journal of Experimental Botany 72(4):1460−72 doi: 10.1093/jxb/eraa525 |
| [23] |
Zhang Z, Chen C, Jiang C, Lin H, Zhao Y, et al. 2024. VvWRKY5 positively regulates wounding-induced anthocyanin accumulation in grape by interplaying with VvMYBA1 and promoting jasmonic acid biosynthesis. Horticulture Research 11:uhae083 doi: 10.1093/hr/uhae083 |
| [24] |
Scogin R. 1980. Anthocyanins of the Bignoniaceae. Biochemical Systematics and Ecology 8(3):273−76 doi: 10.1016/0305-1978(80)90058-7 |
| [25] |
Royal Botanic Gardens, Kew and Missouri Botanical Garden. 2013. The Plant List. www.theplantlist.org |
| [26] |
Gentry AH. 1974. Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6:64 doi: 10.2307/2989698 |
| [27] |
Lohmann LG. 2006. Untangling the phylogeny of neotropical lianas (Bignonieae, Bignoniaceae). American Journal of Botany 93:304−18 doi: 10.3732/ajb.93.2.304 |
| [28] |
Fonseca LHM, Lohmann LG. 2015. Biogeography and evolution of Dolichandra (Bignonieae, Bignoniaceae). Botanical Journal of the Linnean Society 179(3):403−20 doi: 10.1111/boj.12338 |
| [29] |
Ragsac AC, Grose SO, Olmstead RG. 2021. Phylogeny and systematics of crescentieae (Bignoniaceae), a neotropical clade of cauliflorous and bat-pollinated trees. Systematic Botany 46:218−28 doi: 10.1600/036364421x16128061189404 |
| [30] |
Porebski S, Bailey LG, Baum BR. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15:8−15 doi: 10.1007/BF02772108 |
| [31] |
Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890 doi: 10.1093/bioinformatics/bty560 |
| [32] |
Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764−70 doi: 10.1093/bioinformatics/btr011 |
| [33] |
Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, et al. 2017. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33(14):2202−4 doi: 10.1093/bioinformatics/btx153 |
| [34] |
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, et al. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10:giab008 doi: 10.1093/gigascience/giab008 |
| [35] |
Feng X, Cheng H, Portik D, Li H. 2022. Metagenome assembly of high-fidelity long reads with hifiasm-meta. Nature Methods 19(6):671−74 doi: 10.1038/s41592-022-01478-3 |
| [36] |
Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, et al. 2016. Juicer provides a one-click system for analyzing loop-resolution hi-C experiments. Cell Systems 3:95−98 doi: 10.1016/j.cels.2016.07.002 |
| [37] |
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92−95 doi: 10.1126/science.aal3327 |
| [38] |
Robinson JT, Turner D, Durand NC, Thorvaldsdóttir H, Mesirov JP, et al. 2018. Juicebox js. provides a cloud-based visualization system for hi-C data. Cell Systems 6:256−258.e1 doi: 10.1016/j.cels.2018.01.001 |
| [39] |
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, et al. 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America 117:9451−57 doi: 10.1073/pnas.1921046117 |
| [40] |
Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics 25:4.10.1−4.10.14 doi: 10.1002/0471250953.bi0410s25 |
| [41] |
Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12(4):357−60 doi: 10.1038/nmeth.3317 |
| [42] |
Gabriel L, Brůna T, Hoff KJ, Ebel M, Lomsadze A, et al. 2024. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res 34(5):769−77 doi: 10.1101/gr.278090.123 |
| [43] |
Hernández-Plaza A, Szklarczyk D, Botas J, Cantalapiedra CP, Giner-Lamia J, et al. 2023. eggNOG 6.0: enabling comparative genomics across 12 535 organisms. Nucleic Acids Research 51:D389−D394 doi: 10.1093/nar/gkac1022 |
| [44] |
Li Z, Wang C, Wang S, Wang W, Chen F. 2024. HortDB V1.0: a genomic database of horticultural plants. Horticulture Research 11:uhae224 doi: 10.1093/hr/uhae224 |
| [45] |
Van Bel M, Silvestri F, Weitz EM, Kreft L, Botzki A, et al. 2022. PLAZA 5.0: extending the scope and power of comparative and functional genomics in plants. Nucleic Acids Research 50:D1468−D1474 doi: 10.1093/nar/gkab1024 |
| [46] |
Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20:238 doi: 10.1186/s13059-019-1832-y |
| [47] |
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5):1530−34 doi: 10.1093/molbev/msaa015 |
| [48] |
Sanderson MJ. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19(2):301−2 doi: 10.1093/bioinformatics/19.2.301 |
| [49] |
Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution 34(7):1812−19 doi: 10.1093/molbev/msx116 |
| [50] |
Mendes FK, Vanderpool D, Fulton B, Hahn MW. 2021. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36:5516−18 doi: 10.1093/bioinformatics/btaa1022 |
| [51] |
Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. 2014. Jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15:293 doi: 10.1186/1471-2105-15-293 |
| [52] |
Tang H, Krishnakumar V, Zeng X, Xu Z, Taranto A, et al. 2024. JCVI: a versatile toolkit for comparative genomics analysis. iMeta 3(4):e211 doi: 10.1002/imt2.211 |
| [53] |
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24(8):1586−91 doi: 10.1093/molbev/msm088 |
| [54] |
Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923−30 doi: 10.1093/bioinformatics/btt656 |
| [55] |
Chen H, Wang T, He X, Cai X, Lin R, et al. 2022. BRAD V3.0: an upgraded Brassicaceae database. Nucleic Acids Research 50:D1432−D1441 doi: 10.1093/nar/gkab1057 |
| [56] |
Berardi AE, Esfeld K, Jäggi L, Mandel T, Cannarozzi GM, et al. 2021. Complex evolution of novel red floral color in Petunia. The Plant Cell 33(7):2273−95 doi: 10.1093/plcell/koab114 |
| [57] |
Colonna Romano N, Fanti L. 2022. Transposable elements: major players in shaping genomic and evolutionary patterns. Cells 11(6):1048 doi: 10.3390/cells11061048 |
| [58] |
Bomblies K, Madlung A. 2014. Polyploidy in the Arabidopsis genus. Chromosome Research 22(2):117−34 doi: 10.1007/s10577-014-9416-x |
| [59] |
Keller-Przybylkowicz S, Oskiera M, Liu X, Song L, Zhao L, et al. 2024. Transcriptome analysis of white- and red-fleshed apple fruits uncovered novel genes related to the regulation of anthocyanin biosynthesis. International Journal of Molecular Sciences 25(3):1778 doi: 10.3390/ijms25031778 |
| [60] |
Mikami N, Konya M, Enoki S, Suzuki S. 2022. Geraniol as a potential stimulant for improving anthocyanin accumulation in grape berry skin through ABA membrane transport. Plants 11:1694 doi: 10.3390/plants11131694 |