[1]

Song L, Niu Z, Chen S, Zhao S, Qiu Z, et al. 2023. Effects of pea-tea intercropping on rhizosphere soil microbial communities. Plant and Soil 506:125−135

doi: 10.1007/s11104-023-06321-y
[2]

Lei X, Wang T, Yang B, Duan Y, Zhou L, et al. 2022. Progress and perspective on intercropping patterns in tea plantations. Beverage Plant Research 2:18

doi: 10.48130/BPR-2022-0018
[3]

Feng Y, Sunderland T. 2023. Feasibility of tea/tree intercropping plantations on soil ecological service function in China. Agronomy 13:1548

doi: 10.3390/agronomy13061548
[4]

Clúa J, Roda C, Zanetti ME, Blanco FA. 2018. Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes 9:125

doi: 10.3390/genes9030125
[5]

Duan Y, Shang X, Liu G, Zou Z, Zhu X, et al. 2021. The effects of tea plants-soybean intercropping on the secondary metabolites of tea plants by metabolomics analysis. BMC Plant Biology 21:482

doi: 10.1186/s12870-021-03258-1
[6]

Huang Z, Cui C, Cao Y, Dai J, Cheng X, et al. 2022. Tea plant–legume intercropping simultaneously improves soil fertility and tea quality by changing Bacillus species composition. Horticulture Research 9:uhac046

doi: 10.1093/hr/uhac046
[7]

Brankatschk G, Finkbeiner M. 2015. Modeling crop rotation in agricultural LCAs — challenges and potential solutions. Agricultural Systems 138:66−76

doi: 10.1016/j.agsy.2015.05.008
[8]

Xu H, Xiao R, Song T, Luo W, Ren Q, et al. 2008. Effects of mulching and intercropping on the functional diversity of soil microbial communities in tea plantations. Biodiversity Science 16:166−74

[9]

Luhmer K, Blum H, Kraska T, Döring T, Pude R. 2021. Poppy (Papaver somniferum L.) intercropping with spring barley and with white clover: benefits and competitive effects. Agronomy 11:948

doi: 10.3390/agronomy11050948
[10]

Diacono M, Persiani A, Castellini M, Giglio L, Montemurro F. 2021. Intercropping and rotation with leguminous plants in organic vegetables: crop performance, soil properties and sustainability assessment. Biological Agriculture & Horticulture 37:141−67

doi: 10.1080/01448765.2021.1891968
[11]

Wang T, Duan Y, Lei X, Cao Y, Liu L, et al. 2023. Tea plantation intercropping legume improves soil ecosystem multifunctionality and tea quality by regulating rare bacterial taxa. Agronomy 13:1110

doi: 10.3390/agronomy13041110
[12]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[13]

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33:290−95

doi: 10.1038/nbt.3122
[14]

Wang YN, Tang L, Hou Y, Wang P, Yang H, et al. 2016. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Functional & Integrative Genomics 16:383−98

doi: 10.1007/s10142-016-0491-2
[15]

Wilke A, Harrison T, Wilkening J, Field D, Glass EM, et al. 2012. The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinformatics 13:141

doi: 10.1186/1471-2105-13-141
[16]

The UniProt Consortium. 2018. UniProt: the universal protein knowledgebase. Nucleic Acids Research 46:2699

doi: 10.1093/nar/gky092
[17]

Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D, et al. 2021. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Research 49:D274−D281

doi: 10.1093/nar/gkaa1018
[18]

Mi H, Ebert D, Muruganujan A, Mills C, Albou LP, et al. 2021. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Research 49:D394−D403

doi: 10.1093/nar/gkaa1106
[19]

Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. 2023. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research 51:D587−D592

doi: 10.1093/nar/gkac963
[20]

Yu Z, Yang Z. 2020. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Critical Reviews in Food Science and Nutrition 60:844−58

doi: 10.1080/10408398.2018.1552245
[21]

Zhu C, Zhang S, Zhou C, Chen L, Zaripov T, et al. 2020. Integrated transcriptome, microRNA, and phytochemical analyses reveal roles of phytohormone signal transduction and ABC transporters in flavor formation of oolong tea (Camellia sinensis) during solar withering. Journal of Agricultural and Food Chemistry 68:12749−67

doi: 10.1021/acs.jafc.0c05750
[22]

Sun L, Fan K, Wang L, Ma D, Wang Y, et al. 2021. Correlation among metabolic changes in tea plant Camellia sinensis (L.) shoots, green tea quality and the application of cow manure to tea plantation soils. Molecules 26:6180

doi: 10.3390/molecules26206180
[23]

Guiducci G, Paone A, Tramonti A, Giardina G, Rinaldo S, et al. 2019. The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Research 47:4240−54

doi: 10.1093/nar/gkz129
[24]

Limami AM. 2014. Adaptations of nitrogen metabolism to oxygen deprivation in plants. In Low-Oxygen Stress in Plants, eds van Dongen JT, Licausi F. Vienna: Springer Vienna. Vol 21. pp. 209–221. doi: 10.1007/978-3-7091-1254-0_11

[25]

Dutta S, Ray S, Nagarajan K. 2013. Glutamic acid as anticancer agent: an overview. Saudi Pharmaceutical Journal 21:337−43

doi: 10.1016/j.jsps.2012.12.007
[26]

Walker MC, van der Donk WA. 2016. The many roles of glutamate in metabolism. Journal of Industrial Microbiology and Biotechnology 43:419−30

doi: 10.1007/s10295-015-1665-y
[27]

Zhao Y, Yan L, Chen L, Du F, Lin C, et al. 2024. Enhancing the flavor profile of strong-flavored green tea from Sichuan: evaluation and optimization study. LWT 204:116447

doi: 10.1016/j.lwt.2024.116447
[28]

Kumar V, Suman U, Rubal, Yadav SK. 2018. Flavonoid secondary metabolite: biosynthesis and role in growth and development in plants. In Recent Trends and Techniques in Plant Metabolic Engineering, eds Yadav SK, Kumar V, Singh SP. Singapore: Springer Singapore. pp. 19–45. doi: 10.1007/978-981-13-2251-8_2

[29]

Wang Z, Yue C, Tong H. 2021. Analysis of taste characteristics and identification of key chemical components of fifteen Chinese yellow tea samples. Journal of Food Science and Technology 58:1378−88

doi: 10.1007/s13197-020-04649-2
[30]

Zanwar AA, Badole SL, Shende PS, Hegde MV, Bodhankar SL. 2014. Antioxidant role of catechin in health and disease. In Polyphenols in Human Health and Disease, eds Watson RR, Preedy VR, Zibadi S. San diego: Academic Press. pp. 267–71. doi: 10.1016/B978-0-12-398456-2.00021-9

[31]

Rani A, Singh K, Ahuja PS, Kumar S. 2012. Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene 495:205−10

doi: 10.1016/j.gene.2011.12.029
[32]

Wang YS, Xu YJ, Gao LP, Yu O, Wang XZ, et al. 2014. Functional analysis of flavonoid 3',5'-hydroxylase from tea plant (Camellia sinensis): critical role in the accumulation of catechins. BMC Plant Biology 14:347

doi: 10.1186/s12870-014-0347-7